apsimNGpy: API Reference
ApsimModel
- apsimNGpy.core.apsim.ApsimModel(model: os.PathLike | dict | str, out_path: os.PathLike = None, out: os.PathLike = None, lonlat: tuple = None, soil_series: str = 'domtcp', thickness: int = 20, bottomdepth: int = 200, thickness_values: list = None, run_all_soils: bool = False, set_wd=None, **kwargs)
- Main class for apsimNGpy modules.
It inherits from the CoreModel class and therefore has access to a repertoire of methods from it.
This implies that you can still run the model and modify parameters as needed. Example:
>>> from apsimNGpy.core.apsim import ApsimModel >>> from apsimNGpy.core.base_data import load_default_simulations >>> path_model = load_default_simulations(crop='Maize', simulations_object=False) >>> model = ApsimModel(path_model, set_wd=Path.home())# replace with your path >>> model.run(report_name='Report') # report is the default replace as needed
- apsimNGpy.core.apsim.ApsimModel.adjust_dul(self, simulations: tuple | list = None)
- This method checks whether the soil
SAT
is above or belowDUL
and decreasesDUL
values accordingly Need to call this method everytime
SAT
is changed, orDUL
is changed accordingly.
simulations
: str, name of the simulation where we want to adjust DUL and SAT according.returns
:model object
- This method checks whether the soil
- apsimNGpy.core.apsim.ApsimModel.auto_gen_thickness_layers(self, max_depth, n_layers=10, thin_layers=3, thin_thickness=100, growth_type='linear', thick_growth_rate=1.5)
Generate layer thicknesses from surface to depth, starting with thin layers and increasing thickness.
- Args:
max_depth
(float): Total depth in mm.n_layers
(int): Total number of layers.thin_layers
(int): Number of initial thin layers.thin_thickness
(float): Thickness of each thin layer.growth_type
(str): ‘linear’ or ‘exponential’.thick_growth_rate
(float): Growth factor for thick layers (e.g., +50% each layer if exponential).Returns:
List[float]: List of layer thicknesses summing to max_depth.
- apsimNGpy.core.apsim.ApsimModel.replace_downloaded_soils(self, soil_tables: dict | list, simulation_names: tuple | list, **kwargs)
Updates soil parameters and configurations for downloaded soil data in simulation models.
This method adjusts soil physical and organic parameters based on provided soil tables and applies these adjustments to specified simulation models.
Parameters:
soil_tables
(list): A list containing soil data tables. Expected to contain: see the naming convention in the for APSIM - [0]: DataFrame with physical soil parameters. - [1]: DataFrame with organic soil parameters. - [2]: DataFrame with crop-specific soil parameters. - simulation_names (list of str): Names or identifiers for the simulations to be updated.sReturns: - self: Returns an instance of the class for
chaining
methods.This method directly modifies the simulation instances found by
find_simulations
method calls, updating physical and organic soil properties, as well as crop-specific parameters like lower limit (LL
), drain upper limit (DUL
), saturation (SAT
), bulk density (BD
), hydraulic conductivity at saturation (KS
), and more based on the provided soil tables.->> key-word argument
set_sw_con
: Boolean, set the drainage coefficient for each layeradJust_kl
:: Bollean, adjust, kl based on productivity indexCultvarName
: cultivar name which is in the sowing module for adjusting the ruetillage
: specify whether you will be carried to adjust some physical parameters
- apsimNGpy.core.apsim.ApsimModel.run_edited_file(self, table_name=None)
- Parameters:
(str) (table_name) – repot table name in the database
- apsimNGpy.core.apsim.ApsimModel.spin_up(self, report_name: str = 'Report', start=None, end=None, spin_var='Carbon', simulations=None)
Perform a spin-up operation on the aPSim model.
This method is used to simulate a spin-up operation in an aPSim model. During a spin-up, various soil properties or _variables may be adjusted based on the simulation results.
report_name
str, optional (default: ‘Report’)The name of the aPSim report to be used for simulation results.
start
str, optionalThe start date for the simulation (e.g., ‘01-01-2023’). If provided, it will change the simulation start date.
end
str, optionalThe end date for the simulation (e.g., ‘3-12-2023’). If provided, it will change the simulation end date.
spin_var
str, optional (default: ‘Carbon’). the difference between the start and end date will determine the spin-up periodThe variable representing the child of spin-up operation. Supported values are ‘Carbon’ or ‘DUL’.
- selfApsimModel
The modified
ApsimModel
object after the spin-up operation. you could callsave_edited
file and save it to your specified location, but you can also proceed with the simulation
ContinuousVariableProblem
- apsimNGpy.optimizer.one_obj.ContinuousVariableProblem(model: str, simulation=<object object at 0x000002065C003250>, controls=None, control_vars=None, labels=None, func=None, cache_size=400)
Defines an optimization problem for continuous variables in APSIM simulations.
This class enables the user to configure and solve optimization problems involving continuous control variables in APSIM models. It provides methods for setting up control variables, applying bounds and starting values, inserting variable values into APSIM model configurations, and running optimization routines using local solvers or differential evolution.
- Inherits from:
AbstractProblem: A base class providing caching and model-editing functionality.
- Parameters:
model (str):
The name or path of the APSIM template file. .simulation (str or list, optional)
: The name(s) of the APSIM simulation(s) to target.Defaults to all simulations.
control_vars
(list, optional): A list of VarDesc instances defining variable metadata.labels (list, optional)
: Variable labels for display and results tracking.cache_size (int):
Maximum number of results to store in the evaluation cache.- Attributes:
model (str):
The APSIM model template file name.simulation (str):
Target simulation(s).controls (list):
Defined control variables.control_vars (list):
List of VarDesc instances for optimization.labels (list): Labels
for variables.pbar (tqdm):
Progress bar instance.`cache (bool):
Whether to cache evaluation results.`cache_size (int):
Size of the local cache.- Methods:
add_control(...):
Add a new control variable to the optimization problem.bounds:
Return the bounds for all control variables as a tuple.starting_values():
Return the initial values for all control variables.minimize_with_local_solver(...):
Optimize using scipy.optimize.minimize.optimize_with_differential_evolution(...):
Optimize using scipy.optimize.differential_evolution.- Example:
>>> class Problem(ContinuousVariableProblem): ... def evaluate(self, x): ... return -self.run(verbose=False).results.Yield.mean()
>>> problem = Problem(model="Maize", simulation="Sim") >>> problem.add_control("Manager", "Sow using a rule", "Population", int, 5, bounds=[2, 15]) >>> result = problem.minimize_with_local_solver(method='Powell') >>> print(result.x_vars)
- apsimNGpy.optimizer.one_obj.ContinuousVariableProblem.minimize_with_local_solver(self, **kwargs)
Run a local optimization solver using scipy.optimize.minimize.
This method wraps
scipy.optimize.minimize
to solve APSIM optimization problems defined using APSIM control variables and variable encodings. It tracks optimization progress via a progress bar, and decodes results into user-friendly labeled dictionaries.Optimization methods available in scipy.optimize.minimize include:
Method
Type
Gradient Required
Handles Bounds
Handles Constraints
Notes
Nelder-Mead
Local (Derivative-free)
No
No
No
Simplex algorithm
Powell
Local (Derivative-free)
No
Yes
No
Direction set method
CG
Local (Gradient-based)
Yes
No
No
Conjugate Gradient
BFGS
Local (Gradient-based)
Yes
No
No
Quasi-Newton
Newton-CG
Local (Gradient-based)
Yes
No
No
Newton’s method
L-BFGS-B
Local (Gradient-based)
Yes
Yes
No
Limited memory BFGS
TNC
Local (Gradient-based)
Yes
Yes
No
Truncated Newton
COBYLA
Local (Derivative-free)
No
No
Yes
Constrained optimization by linear approx.
SLSQP
Local (Gradient-based)
Yes
Yes
Yes
Sequential Least Squares Programming
trust-constr
Local (Gradient-based)
Yes
Yes
Yes
Trust-region constrained
dogleg
Local (Gradient-based)
Yes
No
No
Requires Hessian
trust-ncg
Local (Gradient-based)
Yes
No
No
Newton-CG trust region
trust-exact
Local (Gradient-based)
Yes
No
No
Trust-region, exact Hessian
trust-krylov
Local (Gradient-based)
Yes
No
No
Trust-region, Hessian-free
Reference:
Parameters:
**kwargs:
Arbitrary keyword arguments passed to scipy.optimize.minimize, such as:
method (str)
: The optimization method to use.options (dict)
: Solver-specific options like disp, maxiter, gtol, etc.bounds (list of tuple)
: Variable bounds; defaults to self.bounds if not provided.x0 (list):
Optional starting guess (will override default provided values withadd_control_var
starting values).
- Returns:
- result (OptimizeResult):
The optimization result object with the following additional field: - result.x_vars (dict): A dictionary of variable labels and optimized values.
Example:
from apsimNGpy.optimizer.one_objective import ContinuousVariableProblem class Problem(ContinuousVariableProblem): def __init__(self, model=None, simulation='Simulation'): super().__init__(model, simulation) self.simulation = simulation def evaluate(self, x, **kwargs): return -self.run(verbose=False).results.Yield.mean() problem = Problem(model="Maize", simulation="Sim") problem.add_control("Manager", "Sow using a rule", "Population", vtype="grid", start_value=5, values=[5, 9, 11]) problem.add_control("Manager", "Sow using a rule", "RowSpacing", vtype="grid", start_value=400, values=[400, 800, 1200]) result = problem.minimize_with_local_solver(method='Powell', options={"maxiter": 300}) print(result.x_vars) {'Population': 9, 'RowSpacing': 800}
- apsimNGpy.optimizer.one_obj.ContinuousVariableProblem.optimize_with_differential_evolution(self, args=(), strategy='best1bin', maxiter=1000, popsize=15, tol=0.01, mutation=(0.5, 1), recombination=0.7, rng=None, callback=None, disp=True, polish=True, init='latinhypercube', atol=0, updating='immediate', workers=1, constraints=(), x0=None, *, integrality=None, vectorized=False)
reference; https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
CoreModel
- apsimNGpy.core.core.CoreModel(model: str | pathlib.Path | dict = None, out_path: str | pathlib.Path | NoneType = None, out: str | pathlib.Path | NoneType = None, set_wd: str | pathlib.Path | NoneType = None, experiment: bool = False, copy: bool | None = None) None
Modify and run APSIM Next Generation (APSIM NG) simulation models.
This class serves as the entry point for all apsimNGpy simulations and is inherited by the ApsimModel class. It is designed to be base class for all apsimNGpy models.
Parameters:
model
(os.PathLike): The file path to the APSIM NG model. This parameter specifies the model file to be used in the simulation.out_path
(str, optional): The path where the output file should be saved. If not provided, the output will be saved with the same name as the model file in the current dir_path.out
(str, optional): Alternative path for the output file. If both out_path and out are specified, out takes precedence. Defaults to None.experiment
(bool, optional): Specifies whether to initiate your model as an experiment defaults to falseby default, the experiment is created with permutation but permutation can be passed as a kewy word argument to change
- Keyword parameters:
``copy`` (bool, deprecated): Specifies whether to clone the simulation file. This parameter is deprecated because the simulation file is now automatically cloned by default.
When an
APSIM
file is loaded, it is automatically copied to ensure a fallback to the original file in case of any issues during operations.Starting with version 0.35, accessing default simulations no longer requires the load_default_simulations function from the base_data module. Instead, default simulations can now be retrieved directly via the CoreModel attribute or the ApsimModel class by specifying the name of the crop (e.g., “Maize”). This means the relevant classes can now accept either a file path or a string representing the crop name.
- apsimNGpy.core.core.CoreModel.add_crop_replacements(self, _crop: str)
Adds a replacement folder as a child of the simulations.
Useful when you intend to edit cultivar parameters.
- Args:
_crop
(str): Name of the crop to be added to the replacement folder.Returns:
ApsimModel: An instance of apsimNGpy.core.core.apsim.ApsimModel or CoreModel.
Raises:
ValueError: If the specified crop is not found.
- apsimNGpy.core.core.CoreModel.add_db_table(self, variable_spec: list = None, set_event_names: list = None, rename: str = 'my_table', simulation_name: Union[str, list, tuple] = <UserOptionMissing>)
Adds a new data base table, which
APSIM
callsReport
(Models.Report) to theSimulation
under a Simulation Zone.This is different from
add_report_variable
in that it creates a new, named report table that collects data based on a given list of _variables and events.- Args:
variable_spec
(list or str): A list of APSIM variable paths to include in the report table.If a string is passed, it will be converted to a list.
set_event_names
(list or str, optional): A list of APSIM events that trigger the recording of _variables.Defaults to [‘[Clock].EndOfYear’] if not provided. other examples include ‘[Clock].StartOfYear’, ‘[Clock].EndOfsimulation’, ‘[crop_name].Harvesting’ etc.,,
rename
(str): The name of the report table to be added. Defaults to ‘my_table’.simulation_name
(str,tuple, or list, Optional): if specified, the name of the simulation will be searched and will become the parent candidate for the report table.If it is none, all Simulations in the file will be updated with the new db_table
Raises
:ValueError
: If no variable_spec is provided.RuntimeError
: If no Zone is found in the current simulation scope.
: Example:
from apsimNGpy import core model = core.base_data.load_default_simulations(crop = 'Maize') model.add_db_table(variable_spec=['[Clock].Today', '[Soil].Nutrient.TotalC[1]/1000 as SOC1'], rename='report2') model.add_db_table(variable_spec=['[Clock].Today', '[Soil].Nutrient.TotalC[1]/1000 as SOC1', '[Maize].Grain.Total.Wt*10 as Yield'], rename='report2', set_event_names=['[Maize].Harvesting','[Clock].EndOfYear' ])
- apsimNGpy.core.core.CoreModel.add_factor(self, specification: str, factor_name: str = None, **kwargs)
Adds a factor to the created experiment. Thus, this method only works on factorial experiments
It could raise a value error if the experiment is not yet created.
Under some circumstances, experiment will be created automatically as a permutation experiment.
specification
: (str), required A specification can be:multiple values or categories e.g., “[Sow using a variable rule].Script.Population =4, 66, 9, 10”
Range of values e.g, “[Fertilise at sowing].Script.Amount = 0 to 200 step 20”,
factor_name
: (str), required - expected to be the user-desired name of the factor being specified e.g., populationExample:
from apsimNGpy.core import base_data apsim = base_data.load_default_simulations(crop='Maize') apsim.create_experiment(permutation=False) apsim.add_factor(specification="[Fertilise at sowing].Script.Amount = 0 to 200 step 20", factor_name='Nitrogen') apsim.add_factor(specification="[Sow using a variable rule].Script.Population =4 to 8 step 2", factor_name='Population') apsim.run() # doctest: +SKIP
- apsimNGpy.core.core.CoreModel.add_model(self, model_type, adoptive_parent, rename=None, adoptive_parent_name=None, verbose=False, source='Models', source_model_name=None, override=True, **kwargs)
Adds a model to the Models Simulations namespace.
Some models are restricted to specific parent models, meaning they can only be added to compatible models. For example, a Clock model cannot be added to a Soil model.
- Args:
model_type
(str or Models object): The type of model to add, e.g., Models.Clock or just “Clock”. if the APSIM Models namespace is exposed to the current script, then model_type can be Models.Clock without strings quotesrename
(str): The new name for the model.adoptive_parent
(Models object): The target parent where the model will be added or moved e.gModels.Clock
orClock
as string all are validadoptive_parent_name
(Models object, optional): Specifies the parent name for precise location. e.gModels.Core.Simulation
orSimulations
all are validsource
(Models, str, CoreModel, ApsimModel object):defaults
to Models namespace, implying a fresh non modified model. The source can be an existing Models or string name to point to one fo the default model example, which we can extract the modeloverride
(bool, optional): defaults to True. When True (recomended) it delete for any model with same name and type at the suggested parent location before adding the new model ifFalse
and proposed model to be added exists at the parent location,APSIM
automatically generates a new name for the newly added model. This is not recommended.- Returns:
None:
Models
are modified in place, so models retains the same reference.- Note:
Added models from
Models namespace
are initially empty. Additional configuration is required to set parameters. For example, after adding a Clock module, you must set the start and end dates.
Example:
from apsimNGpy import core from apsimNGpy.core.core import Models model = core.base_data.load_default_simulations(crop="Maize") model.remove_model(Models.Clock) # first delete the model model.add_model(Models.Clock, adoptive_parent=Models.Core.Simulation, rename='Clock_replaced', verbose=False) model.add_model(model_type=Models.Core.Simulation, adoptive_parent=Models.Core.Simulations, rename='Iowa') model.preview_simulation() # doctest: +SKIP model.add_model( Models.Core.Simulation, adoptive_parent='Simulations', rename='soybean_replaced', source='Soybean') # basically adding another simulation from soybean to the maize simulation
- apsimNGpy.core.core.CoreModel.add_report_variable(self, variable_spec: list | str | tuple, report_name: str = None, set_event_names: str | list = None)
This adds a report variable to the end of other _variables, if you want to change the whole report use change_report
variable_spec
: (str, required): list of text commands for the report _variables e.g., ‘[Clock].Today as Date’param report_name
: (str, optional): name of the report variable if not specified the first accessed report object will be alteredset_event_names
(list or str, optional): A list of APSIM events that trigger the recording of _variables.Defaults to [‘[Clock].EndOfYear’] if not provided.
- Returns:
returns instance of apsimNGpy.core.core.apsim.ApsimModel or apsimNGpy.core.core.apsim.CoreModel
raises an erros if a report is not found
Example:
from apsimNGpy import core model = core.base_data.load_default_simulations('Maize') model.add_report_variable(variable_spec = '[Clock].Today as Date', report_name = 'Report')
- apsimNGpy.core.core.CoreModel.change_report(self, *, command: str, report_name='Report', simulations=None, set_DayAfterLastOutput=None, **kwargs)
Set APSIM report _variables for specified simulations.
This function allows you to set the variable names for an APSIM report in one or more simulations.
command
strThe new report string that contains variable names.
report_name
strThe name of the APSIM report to update defaults to Report.
simulations
list of str, optionalA list of simulation names to update. If None, the function will update the report for all simulations.
None
- apsimNGpy.core.core.CoreModel.change_simulation_dates(self, start_date: str = None, end_date: str = None, simulations: tuple | list = None)
Set simulation dates.
@deprecated
start_date
: (str) optionalStart date as string, by default
None
.end_date
: str (str) optional.End date as string, by default
None
.simulations
(str), optionalList of simulation names to update, if
None
update all simulations.
one of the
start_date
orend_date
parameters should at least not be Noneraises assertion error if all dates are None
return
:none
>>> from apsimNGpy.core.base_data import load_default_simulations >>> model = load_default_simulations(crop='maize') >>> model.change_simulation_dates(start_date='2021-01-01', end_date='2021-01-12') >>> changed_dates = model.extract_dates #check if it was successful >>> print(changed_dates) {'Simulation': {'start': datetime.date(2021, 1, 1), 'end': datetime.date(2021, 1, 12)}} @note It is possible to target a specific simulation by specifying simulation name for this case the name is Simulations, so, it could appear as follows model.change_simulation_dates(start_date='2021-01-01', end_date='2021-01-12', simulation = 'Simulation')
- apsimNGpy.core.core.CoreModel.change_som(self, *, simulations: tuple | list = None, inrm: int = None, icnr: int = None, surface_om_name='SurfaceOrganicMatter', **kwargs)
@deprecated in v0.38 +
Change
Surface Organic Matter
(SOM
) properties in specified simulations.- Parameters:
simulations
(str ort list): List of simulation names to target (default: None).inrm
(int): New value for Initial Residue Mass (default: 1250).icnr`
(int): New value for Initial Carbon to Nitrogen Ratio (default: 27).surface_om_name
(str, optional): name of the surface organic matter child defaults to =’SurfaceOrganicMatter’- Returns:
self: The current instance of the class.
- apsimNGpy.core.core.CoreModel.check_som(self, simulations=None)
@deprecated in versions 0.38+
- apsimNGpy.core.core.CoreModel.clean_up(self, db=True, verbose=False)
Clears the file cloned the datastore and associated csv files are not deleted if db is set to False defaults to True.
- Returns:
>>None: This method does not return a value. >> Please proceed with caution, we assume that if you want to clear the model objects, then you don’t need them, but by making copy compulsory, then, we are clearing the edited files
- apsimNGpy.core.core.CoreModel.clone_model(self, model_type, model_name, adoptive_parent_type, rename=None, adoptive_parent_name=None, in_place=False)
- Clone an existing
model
and move it to a specified parent within the simulation structure. The function modifies the simulation structure by adding the cloned model to the
designated parent
.This function is useful when a model instance needs to be duplicated and repositioned in the
APSIM
simulation hierarchy without manually redefining its structure.model_type
ModelsThe type of the model to be cloned, e.g., Models.Simulation or Models.Clock.
model_name
strThe unique identification name of the model instance to be cloned, e.g., “clock1”.
adoptive_parent_type
ModelsThe type of the new parent model where the cloned model will be placed.
rename
str, optionalThe new name for the cloned model. If not provided, the clone will be renamed using the original name with a _clone suffix.
adoptive_parent_name
str, optionalThe name of the parent model where the cloned model should be moved. If not provided, the model will be placed under the default parent of the specified type.
in_place
bool, optionalIf
True
, the cloned model remains in the same location but is duplicated. Defaults toFalse
.
None
Create a cloned version of “clock1” and place it under “Simulation” with the new name ``”new_clock`”`:
from apsimNGpy.core.base_data import load_default_simulations model = load_default_simulations('Maize') model.clone_model('Models.Clock', "clock1", 'Models.Simulation', rename="new_clock",adoptive_parent_type= 'Models.Core.Simulations', adoptive_parent_name="Simulation")
- Clone an existing
- apsimNGpy.core.core.CoreModel.create_experiment(self, permutation: bool = True, base_name: str = None, **kwargs)
Initialize an
Experiment
instance, adding the necessary models and factors.Args:
kwargs
: Additional parameters for CoreModel.permutation
(bool). If True, the experiment uses a permutation node to run unique combinations of the specified factors for the simulation. For example, if planting population and nitrogen fertilizers are provided, each combination of planting population level and fertilizer amount is run as an individual treatment.base_name
(str, optional): The name of the base simulation to be moved into the experiment setup. if notprovided, it is expected to be Simulation as the default
- apsimNGpy.core.core.CoreModel.edit_cultivar(self, *, CultivarName: str, commands: str, values: Any, **kwargs)
- @deprecated
Edits the parameters of a given cultivar. we don’t need a simulation name for this unless if you are defining it in the manager section, if that it is the case, see update_mgt.
- Requires:
required a replacement for the crops
Args:
CultivarName (str, required): Name of the cultivar (e.g., ‘laila’).
- variable_spec (str, required): A strings representing the parameter paths to be edited.
Example: (‘[Grain].MaximumGrainsPerCob.FixedValue’, ‘[Phenology].GrainFilling.Target.FixedValue’)
values: values for each command (e.g., (721, 760)).
Returns: instance of the class CoreModel or ApsimModel
- apsimNGpy.core.core.CoreModel.edit_model(self, model_type: str, model_name: str, simulations: str | list = 'all', cacheit=False, cache_size=300, verbose=False, **kwargs)
Modify various APSIM model components by specifying the model type and name across given simulations.
model_type
strType of the model component to modify (e.g., ‘Clock’, ‘Manager’, ‘Soils.Physical’, etc.).
simulations
Union[str, list], optionalA simulation name or list of simulation names in which to search. Defaults to all simulations in the model.
model_name
strName of the model instance to modify.
cachit
bool, optionalused to cache results for model selection. Defaults to False. Important during repeated calls, like in optimization. please do not cache, when you expect to make model adjustment, such as adding new child nodes
cache_size
: int, optionalmaximum number of caches that can be made to avoid memory leaks in case cacheit is true. Defaults to 300
**kwargs
dictAdditional keyword arguments specific to the model type. These vary by component:
Weather
:weather_file
(str): Path to the weather.met
file.
Clock
:Date properties such as
Start
andEnd
in ISO format (e.g., ‘2021-01-01’).
Manager
:Variables to update in the Manager script using update_mgt_by_path.
Soils.Physical | Soils.Chemical | Soils.Organic | Soils.Water:
Variables to replace using
replace_soils_values_by_path
.
Valid
parameters
are shown below;Soil Model Type
Supported key word arguments
Physical
AirDry, BD, DUL, DULmm, Depth, DepthMidPoints, KS, LL15, LL15mm, PAWC, PAWCmm, SAT, SATmm, SW, SWmm, Thickness, ThicknessCumulative
Organic
CNR, Carbon, Depth, FBiom, FInert, FOM, Nitrogen, SoilCNRatio, Thickness
Chemical
Depth, PH, Thickness
Report
:report_name
(str): Name of the report model (optional depending on structure).variable_spec
(list[str] or str): Variables to include in the report.set_event_names
(list[str], optional): Events that trigger the report.
Cultivar
:commands
(str): APSIM path to the cultivar parameter to update.values
(Any): Value to assign.cultivar_manager
(str): Name of the Manager script managing the cultivar, which must contain the CultivarName parameter. Required to propagate updated cultivar values, as APSIM treats cultivars as read-only.
- ValueError
If the model instance is not found, required kwargs are missing, or kwargs is empty.
- NotImplementedError
If the logic for the specified model_type is not implemented.
Examples:
from apsimNGpy.core.apsim import ApsimModel model = ApsimModel(model='Maize')
Example of how to edit a cultivar model:
model.edit_model(model_type='Cultivar', simulations='Simulation', commands='[Phenology].Juvenile.Target.FixedValue', values=256, model_name='B_110', new_cultivar_name='B_110_edited', cultivar_manager='Sow using a variable rule')
Edit a soil organic matter module:
model.edit_model( model_type='Organic', simulations='Simulation', model_name='Organic', Carbon=1.23)
Edit multiple soil layers:
model.edit_model( model_type='Organic', simulations='Simulation', model_name='Organic', Carbon=[1.23, 1.0])
Example of how to edit solute models:
model.edit_model( model_type='Solute', simulations='Simulation', model_name='NH4', InitialValues=0.2 ) model.edit_model( model_type='Solute', simulations='Simulation', model_name='Urea', InitialValues=0.002)
Edit a manager script:
model.edit_model( model_type='Manager', simulations='Simulation', model_name='Sow using a variable rule', population=8.4)
Edit surface organic matter parameters:
model.edit_model( model_type='SurfaceOrganicMatter', simulations='Simulation', model_name='SurfaceOrganicMatter', InitialResidueMass=2500) model.edit_model( model_type='SurfaceOrganicMatter', simulations='Simulation', model_name='SurfaceOrganicMatter', InitialCNR=85)
Edit Clock start and end dates:
model.edit_model( model_type='Clock', simulations='Simulation', model_name='Clock', Start='2021-01-01', End='2021-01-12')
Edit report _variables:
model.edit_model( model_type='Report', simulations='Simulation', model_name='Report', variable_spec='[Maize].AboveGround.Wt as abw')
Multiple report _variables:
model.edit_model( model_type='Report', simulations='Simulation', model_name='Report', variable_spec=[ '[Maize].AboveGround.Wt as abw', '[Maize].Grain.Total.Wt as grain_weight'])
- apsimNGpy.core.core.CoreModel.examine_management_info(self, simulations: list | tuple = None)
- @deprecated in versions 0.38+
This will show the current management scripts in the simulation root
simulations
, optionalList or tuple of simulation names to update, if None show all simulations.
- apsimNGpy.core.core.CoreModel.extract_any_soil_physical(self, parameter, simulations: [<class 'list'>, <class 'tuple'>] = <UserOptionMissing>)
Extracts soil physical parameters in the simulation
- Args::
parameter
(_string_): string e.g. DUL, SATsimulations
(string, optional): Targeted simulation name. Defaults to None.
returns an array of the parameter values
- apsimNGpy.core.core.CoreModel.extract_soil_physical(self, simulations: [<class 'tuple'>, <class 'list'>] = None)
Find physical soil
simulation
, optionalSimulation name, if None use the first simulation.
APSIM Models.Soils.Physical object
- apsimNGpy.core.core.CoreModel.extract_start_end_years(self, simulations: str = None)
Get simulation dates. deprecated
simulations
: (str) optionalList of simulation names to use if None get all simulations.
Returns
Dictionary of simulation names with dates.
- apsimNGpy.core.core.CoreModel.find_model(model_name: str, model_namespace=None)
Find a model from the Models namespace and return its path.
- Args:
model_name (str): The name of the model to find. model_namespace (object, optional): The root namespace (defaults to Models). path (str, optional): The accumulated path to the model.
- Returns:
str: The full path to the model if found, otherwise None.
Example:
from apsimNGpy import core # doctest: model =core.base_data.load_default_simulations(crop = "Maize") model.find_model("Weather") # doctest: +SKIP 'Models.Climate.Weather' model.find_model("Clock") # doctest: +SKIP 'Models.Clock'
- apsimNGpy.core.core.CoreModel.get_crop_replacement(self, Crop)
- Parameters:
Crop – crop to get the replacement :return: System.Collections.Generic.IEnumerable APSIM plant object
- apsimNGpy.core.core.CoreModel.get_model_paths(self, cultivar=False) list[str]
Select out a few model types to use for building the APSIM file inspections
- apsimNGpy.core.core.CoreModel.get_simulated_output(self, report_names: str | list, **kwargs) pandas.core.frame.DataFrame
Reads report data from CSV files generated by the simulation.
report_names
Union[str, list]Name or list of names of report tables to read. These should match the report model names in the simulation output.
pd.DataFrame
Concatenated DataFrame containing the data from the specified reports.
ValueError
If any of the requested report names are not found in the available tables.
RuntimeError
If the simulation has not been
run
successfully before attempting to read data.
Example:
from apsimNGpy.core.apsim import ApsimModel model = ApsimModel(model= 'Maize') # replace with your path to the apsim template model model.run() # if we are going to use get_simulated_output, no to need to provide the report name in ``run()`` method df = model.get_simulated_output(report_names = ["Report"]) print(df) SimulationName SimulationID CheckpointID ... Maize.Total.Wt Yield Zone 0 Simulation 1 1 ... 1728.427 8469.616 Field 1 Simulation 1 1 ... 920.854 4668.505 Field 2 Simulation 1 1 ... 204.118 555.047 Field 3 Simulation 1 1 ... 869.180 3504.000 Field 4 Simulation 1 1 ... 1665.475 7820.075 Field 5 Simulation 1 1 ... 2124.740 8823.517 Field 6 Simulation 1 1 ... 1235.469 3587.101 Field 7 Simulation 1 1 ... 951.808 2939.152 Field 8 Simulation 1 1 ... 1986.968 8379.435 Field 9 Simulation 1 1 ... 1689.966 7370.301 Field [10 rows x 16 columns]
- apsimNGpy.core.core.CoreModel.get_weather_from_web(self, lonlat: tuple, start: int, end: int, simulations='all', source='nasa', filename=None)
Replaces the meteorological (met) file in the model using weather data fetched from an online source.
lonlat
:tuple
containing the longitude and latitude coordinates.start
: Start date for the weather data retrieval.end
: End date for the weather data retrieval.simulations
: str, list of simulations to place the weather data, defaults toall
as a stringsource
: Source of the weather data. Defaults to ‘nasa’.filename
: Name of the file to save the retrieved data. If None, a default name is generated.Returns:
self. replace the weather data with the fetched data.
Example:
from apsimNgpy.core.apsim import ApsimModel model = ApsimModel(model= "Maize") model.get_weather_from_web(lonlat = (-93.885490, 42.060650), start = 1990, end =2001)
Changing weather data with unmatching start and end dates in the simulation will lead to
RuntimeErrors
. To avoid this first check the start and end date before proceedign as follows:dt = model.inspect_model_parameters(model_type='Clock', model_name='Clock', simulations='Simulation') start, end = dt['Start'].year, dt['End'].year # output: 1990, 2000
- apsimNGpy.core.core.CoreModel.inspect_file(self, cultivar=False, **kwargs)
- Inspect the file by calling
inspect_model()
throughget_model_paths.
This method is important in inspecting the
whole file
and also getting thescripts paths
- Inspect the file by calling
- apsimNGpy.core.core.CoreModel.inspect_model(self, model_type: Union[str, <module 'Models'>], fullpath=True, **kwargs)
- Inspect the model types and returns the model paths or names. usefull if you want to identify the path to the
model for editing the model.
model_type
: (Models) e.g.Models.Clock
or just'Clock'
will return all fullpath or namesof models in the type Clock
-Models.Manager
returns information about the manager scripts in simulations. strings are allowed to, in the case you may not need to import the global namespace, Models. e.gModels.Clock
will still work well.-Models.Core.Simulation
returns information about the simulation -Models.Climate.Weather returns a list of paths or names pertaining to weather models-Models.Core.IPlant
returns a list of paths or names pertaining to all crops models available in the simulation.
fullpath
: (bool) return the full path of the model relative to the parent simulations node. please note the difference between simulations and simulation.Return: list[str]: list of all full paths or names of the model relative to the parent simulations node
Examples:
from apsimNGpy.core import base_data from apsimNGpy.core.core import Models
load default
maize
module:model = base_data.load_default_simulations(crop ='maize')
Find the path to all the manager script in the simulation:
model.inspect_model(Models.Manager, fullpath=True) [.Simulations.Simulation.Field.Sow using a variable rule', '.Simulations.Simulation.Field.Fertilise at sowing', '.Simulations.Simulation.Field.Harvest']
Inspect the full path of the Clock Model:
model.inspect_model(Models.Clock) # gets the path to the Clock models ['.Simulations.Simulation.Clock']
Inspect the full path to the crop plants in the simulation:
model.inspect_model(Models.Core.IPlant) # gets the path to the crop model ['.Simulations.Simulation.Field.Maize']
Or use full string path as follows:
model.inspect_model(Models.Core.IPlant, fullpath=False) # gets you the name of the crop Models ['Maize']
Get full path to the fertiliser model:
model.inspect_model(Models.Fertiliser, fullpath=True) ['.Simulations.Simulation.Field.Fertiliser']
The models from APSIM Models namespace are abstracted to use strings. All you need is to specify the name or the full path to the model enclosed in a stirng as follows:
model.inspect_model('Clock') # get the path to the clock model ['.Simulations.Simulation.Clock']
Alternatively, you can do the following:
model.inspect_model('Models.Clock') ['.Simulations.Simulation.Clock']
Repeat inspection of the plant model while using a
string
:model.inspect_model('IPlant') ['.Simulations.Simulation.Field.Maize']
Inspect using full model namespace path:
model.inspect_model('Models.Core.IPlant')
What about weather model?:
model.inspect_model('Weather') # inspects the weather module ['.Simulations.Simulation.Weather']
Alternative:
# or inspect using full model namespace path model.inspect_model('Models.Climate.Weather') ['.Simulations.Simulation.Weather']
Try finding path to the cultivar model:
model.inspect_model('Cultivar', fullpath=False) # list all available cultivar names ['Hycorn_53', 'Pioneer_33M54', 'Pioneer_38H20', 'Pioneer_34K77', 'Pioneer_39V43', 'Atrium', 'Laila', 'GH_5019WX']
# we can get only the names of the cultivar models using the full string path:
model.inspect_model('Models.PMF.Cultivar', fullpath = False) ['Hycorn_53', 'Pioneer_33M54', 'Pioneer_38H20', 'Pioneer_34K77', 'Pioneer_39V43', 'Atrium', 'Laila', 'GH_5019WX']
Models can be inspected either by importing the Models namespace or by using string paths. The most reliable approach is to provide the full model path—either as a string or as a Models object. However, remembering full paths can be tedious, so allowing partial model names or references can significantly save time during development and exploration.
- apsimNGpy.core.core.CoreModel.inspect_model_parameters(self, model_type: Union[<module 'Models'>, str], model_name: str, simulations: Union[str, list] = <UserOptionMissing>, parameters: Union[list, set, tuple, str] = 'all', **kwargs)
Inspect the input parameters of a specific
APSIM
model type instance within selected simulations.This method consolidates functionality previously spread across
examine_management_info
,read_cultivar_params
, and other inspectors, allowing a unified interface for querying parameters of interest across a wide range of APSIM models.model_type
strThe name of the model class to inspect (e.g., ‘Clock’, ‘Manager’, ‘Physical’, ‘Chemical’, ‘Water’, ‘Solute’). Shorthand names are accepted (e.g., ‘Clock’, ‘Weather’) as well as fully qualified names (e.g., ‘Models.Clock’, ‘Models.Climate.Weather’).
simulations
Union[str, list]A single simulation name or a list of simulation names within the APSIM context to inspect.
model_name
strThe name of the specific model instance within each simulation. For example, if model_type=’Solute’, model_name might be ‘NH4’, ‘Urea’, or another solute name.
parameters
Union[str, set, list, tuple], optionalA specific parameter or a collection of parameters to inspect. Defaults to ‘all’, in which case all accessible attributes are returned. For layered models like Solute, valid parameters include Depth, InitialValues, SoluteBD, Thickness, etc.
kwargs
dictReserved for future compatibility; currently unused.
Union[dict, list, pd.DataFrame, Any] The format depends on the model type:
Weather
: file path(s) as string(s)Clock
: dictionary with start and end datetime objects (or a single datetime if only one is requested).Manager
: dictionary of script parameters.Soil-related
models: pandas DataFrame of layered values.Report
: dictionary with VariableNames and EventNames.Cultivar
: dictionary of parameter strings.
ValueError
If the specified model or simulation is not found or arguments are invalid.
NotImplementedError
If the model type is unsupported by the current interface.
APSIM Next Generation Python bindings (apsimNGpy)
Python 3.10+
Examples:
model_instance = CoreModel('Maize')
Inspect full soil
Organic
profile:model_instance.inspect_model_parameters('Organic', simulations='Simulation', model_name='Organic') CNR Carbon Depth FBiom ... FOM Nitrogen SoilCNRatio Thickness 0 12.0 1.20 0-150 0.04 ... 347.129032 0.100 12.0 150.0 1 12.0 0.96 150-300 0.02 ... 270.344362 0.080 12.0 150.0 2 12.0 0.60 300-600 0.02 ... 163.972144 0.050 12.0 300.0 3 12.0 0.30 600-900 0.02 ... 99.454133 0.025 12.0 300.0 4 12.0 0.18 900-1200 0.01 ... 60.321981 0.015 12.0 300.0 5 12.0 0.12 1200-1500 0.01 ... 36.587131 0.010 12.0 300.0 6 12.0 0.12 1500-1800 0.01 ... 22.191217 0.010 12.0 300.0 [7 rows x 9 columns]
Inspect soil
Physical
profile:model_instance.inspect_model_parameters('Physical', simulations='Simulation', model_name='Physical') AirDry BD DUL ... SWmm Thickness ThicknessCumulative 0 0.130250 1.010565 0.521000 ... 78.150033 150.0 150.0 1 0.198689 1.071456 0.496723 ... 74.508522 150.0 300.0 2 0.280000 1.093939 0.488438 ... 146.531282 300.0 600.0 3 0.280000 1.158613 0.480297 ... 144.089091 300.0 900.0 4 0.280000 1.173012 0.471584 ... 141.475079 300.0 1200.0 5 0.280000 1.162873 0.457071 ... 137.121171 300.0 1500.0 6 0.280000 1.187495 0.452332 ... 135.699528 300.0 1800.0 [7 rows x 17 columns]
Inspect soil
Chemical
profile:model_instance.inspect_model_parameters('Chemical', simulations='Simulation', model_name='Chemical') Depth PH Thickness 0 0-150 8.0 150.0 1 150-300 8.0 150.0 2 300-600 8.0 300.0 3 600-900 8.0 300.0 4 900-1200 8.0 300.0 5 1200-1500 8.0 300.0 6 1500-1800 8.0 300.0
Inspect one or more specific parameters:
model_instance.inspect_model_parameters('Organic', simulations='Simulation', model_name='Organic', parameters='Carbon') Carbon 0 1.20 1 0.96 2 0.60 3 0.30 4 0.18 5 0.12 6 0.12
Inspect more than one specific properties:
model_instance.inspect_model_parameters('Organic', simulations='Simulation', model_name='Organic', parameters=['Carbon', 'CNR']) Carbon CNR 0 1.20 12.0 1 0.96 12.0 2 0.60 12.0 3 0.30 12.0 4 0.18 12.0 5 0.12 12.0 6 0.12 12.0
Inspect Report module attributes:
model_instance.inspect_model_parameters('Report', simulations='Simulation', model_name='Report') {'EventNames': ['[Maize].Harvesting'], 'VariableNames': ['[Clock].Today', '[Maize].Phenology.CurrentStageName', '[Maize].AboveGround.Wt', '[Maize].AboveGround.N', '[Maize].Grain.Total.Wt*10 as Yield', '[Maize].Grain.Wt', '[Maize].Grain.Size', '[Maize].Grain.NumberFunction', '[Maize].Grain.Total.Wt', '[Maize].Grain.N', '[Maize].Total.Wt']}
Specify only EventNames:
model_instance.inspect_model_parameters(‘Report’, simulations=’Simulation’, model_name=’Report’, parameters=’EventNames’) {‘EventNames’: [‘[Maize].Harvesting’]}
Inspect a weather file path:
model_instance.inspect_model_parameters('Weather', simulations='Simulation', model_name='Weather') '%root%/Examples/WeatherFiles/AU_Dalby.met'
Inspect manager script parameters:
model_instance.inspect_model_parameters('Manager', simulations='Simulation', model_name='Sow using a variable rule') {'Crop': 'Maize', 'StartDate': '1-nov', 'EndDate': '10-jan', 'MinESW': '100.0', 'MinRain': '25.0', 'RainDays': '7', 'CultivarName': 'Dekalb_XL82', 'SowingDepth': '30.0', 'RowSpacing': '750.0', 'Population': '10'}
Inspect manager script by specifying one or more parameters:
model_instance.inspect_model_parameters('Manager', simulations='Simulation', model_name='Sow using a variable rule', parameters='Population') {'Population': '10'}
Inspect cultivar parameters:
model_instance.inspect_model_parameters('Cultivar', simulations='Simulation', model_name='B_110') # lists all path specifications for B_110 parameters abd their values model_instance.inspect_model_parameters('Cultivar', simulations='Simulation', model_name='B_110', parameters='[Phenology].Juvenile.Target.FixedValue') {'[Phenology].Juvenile.Target.FixedValue': '210'}
Inspect surface organic matter module:
model_instance.inspect_model_parameters('Models.Surface.SurfaceOrganicMatter', simulations='Simulation', model_name='SurfaceOrganicMatter') {'NH4': 0.0, 'InitialResidueMass': 500.0, 'StandingWt': 0.0, 'Cover': 0.0, 'LabileP': 0.0, 'LyingWt': 0.0, 'InitialCNR': 100.0, 'P': 0.0, 'InitialCPR': 0.0, 'SurfOM': <System.Collections.Generic.List[SurfOrganicMatterType] object at 0x000001DABDBB58C0>, 'C': 0.0, 'N': 0.0, 'NO3': 0.0}
Inspect a few parameters as needed:
model_instance.inspect_model_parameters('Models.Surface.SurfaceOrganicMatter', simulations='Simulation', ... model_name='SurfaceOrganicMatter', parameters={'InitialCNR', 'InitialResidueMass'}) {'InitialCNR': 100.0, 'InitialResidueMass': 500.0}
Inspect a clock:
model_instance.inspect_model_parameters('Clock', simulations='Simulation', model_name='Clock') {'End': datetime.datetime(2000, 12, 31, 0, 0), 'Start': datetime.datetime(1990, 1, 1, 0, 0)}
Inspect a few Clock parameters as needed:
model_instance.inspect_model_parameters('Clock', simulations='Simulation', model_name='Clock', parameters='End') datetime.datetime(2000, 12, 31, 0, 0)
Access specific components of the datetime object e.g., year, month, day, hour, minute:
model_instance.inspect_model_parameters('Clock', simulations='Simulation', model_name='Clock', parameters='Start').year # gets the start year only 1990
Inspect solute models:
model_instance.inspect_model_parameters('Solute', simulations='Simulation', model_name='Urea') Depth InitialValues SoluteBD Thickness 0 0-150 0.0 1.010565 150.0 1 150-300 0.0 1.071456 150.0 2 300-600 0.0 1.093939 300.0 3 600-900 0.0 1.158613 300.0 4 900-1200 0.0 1.173012 300.0 5 1200-1500 0.0 1.162873 300.0 6 1500-1800 0.0 1.187495 300.0 model_instance.inspect_model_parameters('Solute', simulations='Simulation', model_name='NH4', parameters='InitialValues') InitialValues 0 0.1 1 0.1 2 0.1 3 0.1 4 0.1 5 0.1 6 0.1
- apsimNGpy.core.core.CoreModel.move_model(self, model_type: <module 'Models'>, new_parent_type: <module 'Models'>, model_name: str = None, new_parent_name: str = None, verbose: bool = False, simulations: Union[str, list] = None)
Args:
model_type
(Models): type of model tied to Models Namespacenew_parent_type
: new model parent type (Models)model_name
:name of the model e.g., Clock, or Clock2, whatever name that was given to the modelnew_parent_name
: what is the new parent names =Field2, this field is optional but important if you have nested simulations
Returns:
returns instance of apsimNGpy.core.core.apsim.ApsimModel or apsimNGpy.core.core.apsim.CoreModel
- apsimNGpy.core.core.CoreModel.preview_simulation(self)
Preview the simulation file in the apsimNGpy object in the APSIM graphical user interface.
return
: opens the simulation file
- apsimNGpy.core.core.CoreModel.recompile_edited_model(self, out_path: os.PathLike)
- Args:
out_path
: os.PathLike object this method is called to convert the simulation object from ConverterReturnType to model like objectreturn:
self
- apsimNGpy.core.core.CoreModel.remove_model(self, model_type: <module 'Models'>, model_name: str = None)
Removes a model from the APSIM Models.Simulations namespace.
model_type
ModelsThe type of the model to remove (e.g., Models.Clock). This parameter is required.
model_name
str, optionalThe name of the specific model instance to remove (e.g., “Clock”). If not provided, all models of the specified type may be removed.
- Returns:
None
Example:
from apsimNGpy import core from apsimNGpy.core.core import Models model = core.base_data.load_default_simulations(crop = 'Maize') model.remove_model(Models.Clock) #deletes the clock node model.remove_model(Models.Climate.Weather) #deletes the weather node
- apsimNGpy.core.core.CoreModel.rename_model(self, model_type: <module 'Models'>, old_model_name: str, new_model_name: str, simulations=None)
give new name to a model in the simulations.
model_type
: (Models) Models types e.g., Models.Clock.old_model_name
: (str) current model name.new_model_name
: (str) new model name.simulation
: (str, optional) defaults to all simulations.returns
: NoneExample:
from apsimNGpy import core from apsimNGpy.core.core import Models apsim = core.base_data.load_default_simulations(crop = 'Maize') apsim = apsim.rename_model(Models.Clock, 'Clock', 'clock')
- apsimNGpy.core.core.CoreModel.replace_model_from(self, model, model_type: str, model_name: str = None, target_model_name: str = None, simulations: str = None)
- Replace a model e.g., a soil model with another soil model from another APSIM model.
The method assumes that the model to replace is already loaded in the current model and is is the same class as source model. e.g., a soil node to soil node, clock node to clock node, et.c
- Args:
model
: Path to the APSIM model file or a CoreModel instance.model_type
(str): Class name (as string) of the model to replace (e.g., “Soil”).model_name
(str, optional): Name of the model instance to copy from the source model.If not provided, the first match is used.
target_model_name
(str, optional): Specific simulation name to target for replacement.Only used when replacing Simulation-level objects.
simulations
(str, optional): Simulation(s) to operate on. If None, applies to all.- Returns:
self: To allow method chaining.
Raises:
ValueError
: Ifmodel_type
is “Simulations” which is not allowed for replacement.
- apsimNGpy.core.core.CoreModel.replace_soil_property_values(self, *, parameter: str, param_values: list, soil_child: str, simulations: list = <UserOptionMissing>, indices: list = None, crop=None, **kwargs)
Replaces values in any soil property array. The soil property array.
parameter
: str: parameter name e.g., NO3, ‘BD’param_values
: list or tuple: values of the specified soil property name to replacesoil_child
: str: sub child of the soil component e.g., organic, physical etc.simulations
: list: list of simulations to where the child is found ifnot found, all current simulations will receive the new values, thus defaults to None
indices
: list. Positions in the array which will be replaced. Please note that unlike C#, python satrt counting from 0crop
(str, optional): string for soil water replacement. Default is None
- apsimNGpy.core.core.CoreModel.replace_soils_values_by_path(self, node_path: str, indices: list = None, **kwargs)
set the new values of the specified soil object by path. only layers parameters are supported.
Unfortunately, it handles one soil child at a time e.g.,
Physical
at a goArgs:
node_path
(str, required): complete path to the soil child of the Simulations e.g.,Simulations.Simulation.Field.Soil.Organic.Use`copy path to node fucntion in the GUI to get the real path of the soil node.
indices
(list, optional): defaults to none but could be the position of the replacement values for arrayskwargs
(key word arguments): This carries the parameter and the values e.g., BD = 1.23 or BD = [1.23, 1.75]if the child is
Physical
, orCarbon
if the child isOrganic
raises
ValueError
if none of the key word arguments, representing the paramters are specified- returns:
apsimNGpy.core.CoreModel
object and if the path specified does not translate to the child object in
the simulation
Example:
from apsimNGpy.core.base_data import load_default_simulations model = load_default_simulations(crop ='Maize', simulations_object=False) # initiate model. model = CoreModel(model) # ``replace`` with your intended file path model.replace_soils_values_by_path(node_path='.Simulations.Simulation.Field.Soil.Organic', indices=[0], Carbon =1.3) sv= model.get_soil_values_by_path('.Simulations.Simulation.Field.Soil.Organic', 'Carbon') output # {'Carbon': [1.3, 0.96, 0.6, 0.3, 0.18, 0.12, 0.12]}
- apsimNGpy.core.core.CoreModel.replicate_file(self, k: int, path: os.PathLike = None, suffix: str = 'replica')
Replicates a file
k
times.If a
path
is specified, the copies will be placed in that dir_path with incremented filenames.If no path is specified, copies are created in the same dir_path as the original file, also with incremented filenames.
Parameters: - self: The core.api.CoreModel object instance containing ‘path’ attribute pointing to the file to be replicated.
k (int): The number of copies to create.
path (str, optional): The dir_path where the replicated files will be saved. Defaults to None, meaning the
same dir_path as the source file.
suffix (str, optional): a suffix to attached with the copies. Defaults to “replicate”
Returns: - A list of paths to the newly created files if get_back_list is True else a generator is returned.
- apsimNGpy.core.core.CoreModel.restart_model(self, model_info=None)
model_info
: A named tuple object returned by load_apsim_model from the model_loader module.Notes: - This parameter is crucial whenever we need to
reinitialize
the model, especially after updating management practices or editing the file. - In some cases, this method is executed automatically. - Ifmodel_info
is not specified, the simulation will be reinitialized from self.This function is called by
save_edited_file
andupdate_mgt
.- return:
self
- apsimNGpy.core.core.CoreModel.run(self, report_name: tuple | list | str = None, simulations: tuple | list = None, clean_up: bool = False, verbose: bool = False, **kwargs) 'CoreModel'
Run
APSIM
model simulations.report_name
Union[tuple, list, str], optionalDefaults to APSIM default Report Name if not specified. - If iterable, all report tables are read and aggregated into one DataFrame. - If None, runs without collecting database results. - If str, a single DataFrame is returned.
simulations
Union[tuple, list], optionalList of simulation names to run. If None, runs all simulations.
clean_up
bool, optionalIf True, removes existing database before running.
verbose
bool, optionalIf True, enables verbose output for debugging. The method continues with debugging info anyway if the run was unsuccessful
kwargs
dictAdditional keyword arguments, e.g., to_csv=True
CoreModel
Instance of the class CoreModel.
RuntimeError
Raised if the
APSIM
run is unsuccessful. Common causes includemissing meteorological files
, mismatched simulationstart
dates withweather
data, or otherconfiguration issues
.
Example:
Instatiate an
apsimNGpy.core.apsim.ApsimModel
object and runfrom apsimNGpy.core.apsim import ApsimModel model = ApsimModel(model= 'Maize')# replace with your path to the apsim template model model.run(report_name = "Report")
- apsimNGpy.core.core.CoreModel.save(self, file_name=None)
Save the simulation models to file
file_name
: The name of the file to save the defaults to none, taking the exising filenameReturns: model object
- apsimNGpy.core.core.CoreModel.save_edited_file(self, out_path: os.PathLike = None, reload: bool = False) ForwardRef('CoreModel') | None
- Saves the model to the local drive.
@deprecated: use save() method instead
Notes: - If out_path is None, the save_model_to_file function extracts the filename from the Model.Core.Simulation object. - out_path, however, is given high priority. Therefore, we first evaluate if it is not None before extracting from the file. - This is crucial if you want to give the file a new name different from the original one while saving.
Parameters - out_path (str): Desired path for the .apsimx file, by default, None. - reload (bool): Whether to load the file using the out_path or the model’s original file name.
- apsimNGpy.core.core.CoreModel.set_categorical_factor(self, factor_path: str, categories: list | tuple, factor_name: str = None)
wraps around
add_factor()
to add a continuous factor, just for clarity.factor_path
: (str, required): path of the factor definition relative to its child node “[Fertilise at sowing].Script.Amount”factor_name
: (str) name of the factor.categories
: (tuple, list, required): multiple values of a factorreturns
:ApsimModel
orCoreModel
: An instance ofapsimNGpy.core.core.apsim.ApsimModel
orCoreModel
.
Example:
from apsimNGpy.core import base_data apsim = base_data.load_default_simulations(crop='Maize') apsim.create_experiment(permutation=False) apsim.set_continuous_factor(factor_path = "[Fertilise at sowing].Script.Amount", lower_bound=100, upper_bound=300, interval=10)
- apsimNGpy.core.core.CoreModel.set_continuous_factor(self, factor_path, lower_bound, upper_bound, interval, factor_name=None)
Wraps around add_factor to add a continuous factor, just for clarity
- Args:
factor_path
: (str): The path of the factor definition relative to its child node,e.g., “[Fertilise at sowing].Script.Amount”.
factor_name
: (str): The name of the factor.lower_bound
: (int or float): The lower bound of the factor.upper_bound
: (int or float): The upper bound of the factor.interval
: (int or float): The distance between the factor levels.Returns
:ApsimModel
orCoreModel
: An instance of apsimNGpy.core.core.apsim.ApsimModel or CoreModel.
Example:
from apsimNGpy.core import base_data apsim = base_data.load_default_simulations(crop='Maize') apsim.create_experiment(permutation=False) apsim.set_continuous_factor(factor_path = "[Fertilise at sowing].Script.Amount", lower_bound=100, upper_bound=300, interval=10)
- apsimNGpy.core.core.CoreModel.show_met_file_in_simulation(self, simulations: list = None)
Show weather file for all simulations
- apsimNGpy.core.core.CoreModel.update_cultivar(self, *, parameters: dict, simulations: list | tuple = None, clear=False, **kwargs)
Update cultivar parameters
parameters
(dict, required) dictionary of cultivar parameters to update.simulations
, optionalList or tuples of simulation names to update if None update all simulations.
clear
(bool, optional)If True remove all existing parameters, by default False.
- apsimNGpy.core.core.CoreModel.update_mgt(self, *, management: Union[dict, tuple], simulations: [<class 'list'>, <class 'tuple'>] = <UserOptionMissing>, out: [<class 'pathlib.Path'>, <class 'str'>] = None, reload: bool = True, **kwargs)
Update management settings in the model. This method handles one management parameter at a time.
management
dict or tupleA dictionary or tuple of management parameters to update. The dictionary should have ‘Name’ as the key for the management script’s name and corresponding values to update. Lists are not allowed as they are mutable and may cause issues with parallel processing. If a tuple is provided, it should be in the form (param_name, param_value).
simulations
list of str, optionalList of simulation names to update. If None, updates all simulations. This is not recommended for large numbers of simulations as it may result in a high computational load.
out
str or pathlike, optionalPath to save the edited model. If None, uses the default output path specified in self.out_path or self.model_info.path. No need to call save_edited_file after updating, as this method handles saving.
- selfCoreModel
Returns the instance of the CoreModel class for method chaining.
Notes - Ensure that the
management
parameter is provided in the correct format to avoid errors. - This method does not performvalidation
on the providedmanagement
dictionary beyond checking for key existence. - If the specified management script or parameters do not exist, they will be ignored.
- apsimNGpy.core.core.CoreModel.update_mgt_by_path(self, *, path: str, fmt='.', **kwargs)
- Args:
path
: complete node path to the script manager e.g. ‘.Simulations.Simulation.Field.Sow using a variable rule’fmt
: seperator for formatting the path e.g., “.”. Other characters can be used withcaution, e.g., / and clearly declared in fmt argument. If you want to use the forward slash, it will be ‘/Simulations/Simulation/Field/Sow using a variable rule’, fmt = ‘/’
kwargs
: Corresponding keyword arguments representing the paramters in the script manager and their values. Values is what you want to change to; Example herePopulation
=8.2, values should be entered with their corresponding data types e.g.,int, float, bool,str etc.
return: self
ModelTools
- apsimNGpy.core._modelhelpers.ModelTools() None
A utility class providing convenient access to core APSIM model operations and constants.
- Attributes:
ADD
(callable): Function or class for adding components to an APSIM model.DELETE
(callable): Function or class for deleting components from an APSIM model.MOVE
(callable): Function or class for moving components within the model structure.RENAME
(callable): Function or class for renaming components.CLONER
(callable): Utility to clone APSIM models or components.REPLACE
(callable): Function to replace components in the model.MultiThreaded
(Enum): Enumeration value to specify multi-threaded APSIM runs.SingleThreaded
(Enum): Enumeration value to specify single-threaded APSIM runs.ModelRUNNER
(class): APSIM run manager that handles simulation execution.CLASS_MODEL
(type): The type of the APSIM Clock model, often used for type checks or instantiation.ACTIONS
(tuple): Set of supported string actions (‘get’, ‘delete’, ‘check’).COLLECT
(callable): Function for forcing memory checks
apsimNGpy.core.base_data
- apsimNGpy.core.base_data.load_default_sensitivity_model(method: str, set_wd: str = None, simulations_object: bool = True)
Load default simulation model from
APSIM
Example Folder.method
: string of the sentitivity child to load e.g."Morris"
orSobol
, not case-sensitive.set_wd
: string of the set_wd to copy the model.simulations_object
: bool to specify whether to return apsimNGp.core simulation object defaults toTrue
.Returns:
apsimNGpy.core.CoreModel simulation objects# load apsimNG object directly
>>> morris_model = load_default_sensitivity_model(method = 'Morris', simulations_object=True)
>>> morris_model.run()
- class apsimNGpy.core.apsimSoilModel
- Main class for apsimNGpy modules.
It inherits from the CoreModel class and therefore has access to a repertoire of methods from it.
This implies that you can still run the model and modify parameters as needed. Example:
>>> from apsimNGpy.core.apsim import ApsimModel >>> from apsimNGpy.core.base_data import load_default_simulations >>> path_model = load_default_simulations(crop='Maize', simulations_object=False) >>> model = ApsimModel(path_model, set_wd=Path.home())# replace with your path >>> model.run(report_name='Report') # report is the default replace as needed
apsimNGpy.core.load_model
apsimNGpy.core.runner
- apsimNGpy.core.runner.collect_csv_by_model_path(model_path) dict[Any, Any]
Collects the data from the simulated model after run
- apsimNGpy.core.runner.collect_csv_from_dir(dir_path, pattern, recursive=False) pandas.core.frame.DataFrame
- Collects the csf=v files in a directory using a pattern, usually the pattern resembling the one of the simulations used to generate those csv files
dir_path
: (str) path where to look for csv filesrecursive
: (bool) whether to recursively search through the directory defaults to false:pattern
:(str) pattern of the apsim files that produced the csv files through simulations- returns
a generator object with pandas data frames
Example:
mock_data = Path.home() / 'mock_data' # this a mock directory substitute accordingly df1= list(collect_csv_from_dir(mock_data, '*.apsimx', recursive=True)) # collects all csf file produced by apsimx recursively df2= list(collect_csv_from_dir(mock_data, '*.apsimx', recursive=False)) # collects all csf file produced by apsimx only in the specified directory directory
- apsimNGpy.settings.config_internal(key: str, value: str) None
Stores the apsim version and many others to be used by the app
- apsimNGpy.core.runner.get_apsim_version(verbose: bool = False)
Display version information of the apsim model currently in the apsimNGpy config environment.
verbose
: (bool) Prints the version informationinstantly
Example:
apsim_version = get_apsim_version()
- apsimNGpy.core.runner.run_from_dir(dir_path, pattern, verbose=False, recursive=False, write_tocsv=True) [<class 'pandas.core.frame.DataFrame'>]
- This function acts as a wrapper around the
APSIM
command line recursive tool, automating the execution of APSIM simulations on all files matching a given pattern in a specified directory. It facilitates running simulations recursively across directories and outputs the results for each file are stored to a csv file in the same directory as the file’.
What this function does is that it makes it easy to retrieve the simulated files, returning a generator that yields data frames
- Parameters:
dir_path
: (str or Path, required). The path to the directory where thesimulation files are located.
pattern
: (str, required): The file pattern to match for simulation files(e.g., “*.apsimx”).
recursive
: (bool, optional): Recursively search through subdirectories for filesmatching the file specification.
write_tocsv
: (bool, optional): specify whether to write thesimulation results to a csv. if true, the exported csv files bear the same name as the input apsimx file name with suffix reportname.csv. if it is
False
,if
verbose
, the progress is printed as the elapsed time and the successfully saved csv
returns
– a
generator
that yields data frames knitted by pandas
Example:
mock_data = Path.home() / 'mock_data' # As an example, let's mock some data; move the APSIM files to this directory before running mock_data.mkdir(parents=True, exist_ok=True) from apsimNGpy.core.base_data import load_default_simulations path_to_model = load_default_simulations(crop='maize', simulations_object=False) # Get base model ap = path_to_model.replicate_file(k=10, path=mock_data) if not list(mock_data.rglob("*.apsimx")) else None df = run_from_dir(str(mock_data), pattern="*.apsimx", verbose=True, recursive=True) # All files that match the pattern
- This function acts as a wrapper around the
- apsimNGpy.core.runner.run_model_externally(model: pathlib.Path | str, verbose: bool = False, to_csv: bool = False) subprocess.Popen[str]
Runs an
APSIM
model externally, ensuring cross-platform compatibility.Although
APSIM
models can be run internally, compatibility issues across different APSIM versions— particularly with compiling manager scripts—led to the introduction of this method.model
: (str) Path to theAPSIM
model file or a filename pattern.verbose
: (bool) IfTrue
, prints stdout output during execution.to_csv
: (bool) IfTrue
, write the results to a CSV file in the same directory.returns
: A subprocess.Popen object.Example:
result =run_model_externally("path/to/model.apsimx", verbose=True, to_csv=True) from apsimNGpy.core.base_data import load_default_simulations path_to_model = load_default_simulations(crop ='maize', simulations_object =False) pop_obj = run_model_externally(path_to_model, verbose=False) pop_obj1 = run_model_externally(path_to_model, verbose=True)# when verbose is true, will print the time taken
- apsimNGpy.core.runner.upgrade_apsim_file(file: str, verbose: bool = True)
Upgrade a file to the latest version of the .apsimx file format without running the file.
file
: file to be upgraded to the newest versionverbose
: Write detailed messages to stdout when a conversion starts/finishes.return
The latest version of the .apsimx file with the same name as the input file
Example:
from apsimNGpy.core.base_data import load_default_simulations filep =load_default_simulations(simulations_object= False)# this is just an example perhaps you need to pass a lower verion file because this one is extracted from thecurrent model as the excutor upgrade_file =upgrade_apsim_file(filep, verbose=False)
apsimNGpy.core_utils.database_utils
- apsimNGpy.core_utils.database_utils.clear_table(db, table_name)
db
: path to db.table_name
: name of the table to clear.return
: None
- apsimNGpy.core_utils.database_utils.dataview_to_dataframe(_model, reports)
- Convert .NET System.Data.DataView to Pandas DataFrame.
report (str, list, tuple) of the report to be displayed. these should be in the simulations :param apsimng model: CoreModel object or instance :return: Pandas DataFrame
- apsimNGpy.core_utils.database_utils.get_db_table_names(d_b)
d_b
: database name or path.return:
all namesSQL
database tablenames
existing within the database
- apsimNGpy.core_utils.database_utils.read_with_query(db, query)
Executes an SQL query on a specified database and returns the result as a Pandas DataFrame.
Args:
db
(str): The database file path or identifier to connect to.query
(str): The SQL query string to be executed. The query should be a valid SQL SELECT statement.Returns:
pandas.DataFrame
: A DataFrame containing the results of the SQL query.The function opens a connection to the specified SQLite database, executes the given SQL query, fetches the results into a DataFrame, then closes the database connection.
- Example:
# Define the database and the query
>>> database_path = 'your_database.sqlite' >>> sql_query = 'SELECT * FROM your_table WHERE condition = values'
# Get the query result as a DataFrame
>>>df = read_with_query(database_path, sql_query)
# Work with the DataFrame >>> print(df)
Note: Ensure that the database path and the query are correct and that the query is a proper SQL SELECT statement. The function uses
sqlite3
for connecting to the database; make sure it is appropriate for your database.
- class apsimNGpy.core_utils.exceptionsTableNotFoundError
Exception raised when the specified table cannot be found.
apsimNGpy.manager.soilmanager
- apsimNGpy.manager.soilmanager.DownloadsurgoSoiltables(lonlat, select_componentname=None, summarytable=False)
Downloads SSURGO soil tables
- param lonlat:
tuple of (longitude, latitude)
- param select_componentname:
specific component name within the map unit, default None
- param summarytable:
if True, prints summary table of component names and their percentages
- apsimNGpy.manager.soilmanager.set_depth(depththickness)
parameters
depththickness (array): an array specifying the thicknness for each layer nlayers (int); number of layers just to remind you that you have to consider them —— return
bottom depth and top depth in a turple
apsimNGpy.manager.weathermanager
- apsimNGpy.manager.weathermanager.daterange(start, end)
- param start:
(int) the starting year to download the weather data
- apsimNGpy.manager.weathermanager.day_of_year_to_date(year, day_of_year)
Convert day of the year to a date.
year
intThe year to which the day of the year belongs.
day_of_year
intThe day of the year (1 to 365 or 366).
datetime.date
he corresponding date.datetime.date
T
- apsimNGpy.manager.weathermanager.get_iem_by_station(dates_tuple, station, path, met_tag)
dates_tuple
: (tuple, list) is a tupple/list of strings with date rangesan example date string should look like this:
dates
= [“01-01-2012”,”12-31-2012”]
station
: (str) is the station where toe xtract the data from -Ifstation
is given data will be downloaded directly from the station the default is false.- param met_tag:
your preferred suffix to save on file
- apsimNGpy.manager.weathermanager.merge_columns(df1_main, common_column, df2, fill_column, df2_colummn)
- Parameters:
df_main
(pd.DataFrame): The first DataFrame to be merged and updated.common_column
(str): The name of the common column used for merging.df2
(pd.DataFrame): The second DataFrame to be merged with ‘df_main’.fill_column
(str): The column in ‘edit’ to be updated with values from ‘df2_column’.df2_column
(str): The column in ‘df2’ that provides replacement values for ‘fill_column’.Returns
:pd.DataFrame
: A new DataFrame resulting from the merge and update operations.
apsimNGpy.parallel.process
- apsimNGpy.parallel.process.custom_parallel(func, iterable: Iterable, *args, **kwargs)
Run a function in parallel using threads or processes.
- *Args:
func
(callable): The function torun
in parallel.iterable
(iterable): An iterable of items that will be ran_ok by the function.*args
: Additional arguments to pass to thefunc
function.- Yields:
Any: The results of the
func
function for each item in the iterable.
- **kwargs
use_thread
(bool, optional): If True, use threads for parallel execution; if False, use processes. Default is False.ncores
(int, optional): The number of threads or processes to use for parallel execution. Default is 50% of cpucores on the machine.
verbose
(bool): if progress should be printed on the screen, default is True.progress_message (str) sentence to display progress such processing weather please wait. defaults to f”Processing multiple jobs via ‘func.__name__’ please wait!”.
void
(bool, optional): if True, it implies that the we start consuming data internally right away, recomended for methods that operates on objects without returning data,such that you dont need to unzip or iterate on such returned data objects.
- apsimNGpy.parallel.process.download_soil_tables(iterable: Iterable, use_threads: bool = False, ncores: int = 2, **kwargs)
Downloads soil data from SSURGO (Soil Survey Geographic Database) based on lonlat coordinates.
- Args:
iterable
(iterable): An iterable containing lonlat coordinates as tuples or lists. Preferred is generator.use_threads
(bool, optional): If True, use thread pool execution. If False, use process pool execution. Defaultis
False
. - Ncores (int, optional): The number of CPU cores or threads to use for parallel processing. If not provided, it defaults to40%
of available CPU cores.
Returns: - a
generator
: with dictionaries containing calculated soil profiles with the corresponding index positions based on lonlat coordinates.Example:
# Example usage of download_soil_tables function >>> from your_module import download_soil_tables
>>>Lonlat_coords = [(x1, y1), (x2, y2), …] # Replace with actual lonlat coordinates
# Using threads for parallel processing
>>> soil_profiles = download_soil_tables(lonlat_coords, use_threads=True, ncores=4)
Kwargs
:func
custom method for downloading soilsNotes: - This function efficiently downloads soil data and returns calculated profiles. - The choice of thread or process execution can be specified with the
use_threads
parameter. - By default, the function utilizes available CPU cores or threads (40% of total) if ncores is not provided. - Progress information is displayed during execution. - Handle any exceptions that may occur during execution to avoid aborting the whole download
- apsimNGpy.parallel.process.run_apsimx_files_in_parallel(iterable_files: Iterable, **kwargs)
Run APSIMX simulation from multiple files in parallel.
Args:
iterable_files
(list): A list of APSIMX files to be run in parallel.ncores
(int, optional): The number of CPU cores or threads to use for parallel processing. If not provided, it defaults to 50% of available CPU cores.use_threads
(bool, optional): If set to True, the function uses thread pool execution; otherwise, it uses process pool execution. Default is False.Returns:
returns
a generator object containing the path to the datastore or sql databasesExample:
# Example usage of read_result_in_parallel function
>>> from apsimNgpy.parallel.process import run_apsimxfiles_in_parallel >>> simulation_files = ["file1.apsimx", "file2.apsimx", ...] # Replace with actual database file names
# Using processes for parallel execution
>>> result_generator = run_apsimxfiles_in_parallel(simulation_files, ncores=4, use_threads=False) ```
Notes: - This function efficiently reads db file results in parallel. - The choice of thread or process execution can be specified with the use_threads parameter. - By default, the function uses 50% of available CPU cores or threads if ncores is not provided. - Progress information is displayed during execution. - Handle any exceptions that may occur during execution for robust processing.
- apsimNGpy.core_utils.run_utils.run_model(path)
- Parameters:
path – path to apsimx file :return: none
apsimNGpy.validation.evaluator
- class apsimNGpy.validation.evaluatorMetrics
This class is holds the evaluation metrics or the loss functions used in evaluating the model performance
- class apsimNGpy.validation.evaluatorvalidate
supply predicted and observed values for evaluating on the go please see co-current evaluator class