apsimNGpy: API Reference
apsimNGpy.core.apsim
Interface to APSIM simulation models using Python.NET author: Richard Magala email: magalarich20@gmail.com
Classes
- class apsimNGpy.core.apsim.ApsimModel
- This class inherits from - CoreModeland extends its capabilities.- High-level methods/attributes flow between the - ApsimModelclass and its parents, and child class is illustrated below:- flowchart LR PlotManager["PlotManager"] CoreModel["CoreModel"] ApsimModel["ApsimModel"] ExperimentManager["ExperimentManager"] PlotManager --> CoreModel CoreModel --> ApsimModel ApsimModel --> ExperimentManager- PlotManagerProduces visual outputs from model results. (Not exposed in the public API reference.)
- CoreModelProvides core methods for running and manipulating APSIM models. (Not exposed in the public API reference.)
- ApsimModelExtends- CoreModelwith higher-level functionality.
- ExperimentManagerCreates and manages multi-factor experiments from a base scenario.
 - from pathlib import Path from apsimNGpy.core.apsim import ApsimModel # Initialize a model model = ApsimModel( 'Maize', out_path=Path.home() / 'apsim_model_example.apsimx' ) # Run the model model.run(report_name='Report') # 'Report' is the default table name; adjust if needed # Get all results res = model.results # Or fetch a specific report table from the APSIM database report_df = model.get_simulated_output('Report') - List of Public Attributes:
- str_model
 - List of Public Methods- __init__(self, model: os.PathLike | dict | str, out_path: str | pathlib.Path = None, set_wd=None, **kwargs)
 - Initialize self. See help(type(self)) for accurate signature. - get_soil_from_web(self, simulation_name: str | tuple | NoneType = None, *, lonlat: System.Tuple[Double, Double] | None = None, soil_series: str | None = None, thickness_sequence: Sequence[float] | None = 'auto', thickness_value: int = None, max_depth: int | None = 2400, n_layers: int = 10, thinnest_layer: int = 100, thickness_growth_rate: float = 1.5, edit_sections: Sequence[str] | None = None, attach_missing_sections: bool = True, additional_plants: tuple = None, adjust_dul: bool = True)
 - Download SSURGO-derived soil for a given location and populate the APSIM NG soil sections in the current model. - This method updates the target Simulation(s) in-place by attaching a Soil node (if missing) and writing section properties from the downloaded profile. - Parameters- simulationstr | sequence[str] | None, default None
- Target simulation name(s). If - None, all simulations are updated.
- lonlattuple[float, float] | None
- Location for SSURGO download, as - (lon, lat)in decimal degrees (e.g.,- (-93.045, 42.012)).
- soil_seriesstr | None, optional
- Optional component/series filter. If - None, the dominant series by area is used. If a non-existent series is supplied, an error is raised.
- thickness_sequencesequence[float] | str | None, default “auto”
- Explicit layer thicknesses (mm). If - "auto", thicknesses are generated from the layer controls (e.g., number of layers, growth rate, thinnest layer, and- max_depth). If- None, you must provide- thickness_valueand- max_depthto construct a uniform sequence.
- thickness_valueint | None, optional
- Uniform thickness (mm) for all layers. Ignored if - thickness_sequenceis provided; used only when- thickness_sequenceis- None.
- max_depthint, default 2400
- Maximum soil depth (mm) to cover with the thickness sequence. 
- edit_sectionssequence[str], optional
- Sections to edit. Default: - ("physical", "organic", "chemical", "water", "water_balance", "solutes", "soil_crop", "meta_info"). Note: if sections are edited with differing layer counts, APSIM may error at run time.
- attach_missing_sectionsbool, default True
- If - True, create and attach missing section nodes before editing.
- additional_plantssequence[str] | None, optional
- Plant names for which to create/populate - SoilCropentries (e.g., to set KL/XF).
- adjust_dulbool, optional
- If - True, adjust layer values where- SATexceeds- DULto prevent APSIM runtime errors.
 - Returns- self
- The same instance, to allow method chaining. 
 - Raises- ValueError
- thickness_sequenceprovided with any non-positive value(s).
- thickness_sequenceis- Noneand- thickness_valueis- None.
- Units mismatch or inconsistency between - thickness_valueand- max_depth.
 
 - Notes- Assumes soil sections live under a Soil node; when - attach_missing_sections=Truea Soil node is created if missing.
- Uses the optimized SoilManager routines (vectorized assignments / .NET double[] marshaling). 
- Side effects (in place on the APSIM model):
- Creates/attaches Soil when needed. 
- Creates/updates child sections ( - Physical,- Organic,- Chemical,- Water,- WaterBalance,- SoilCrop) as listed in- edit_sections.
- Overwrites section properties (e.g., layer arrays such as - Depth,- BD,- LL15,- DUL,- SAT; solutes; crop KL/XF) with downloaded values.
- Add SoilCrop children for any names in - additional_plants.
- Performs network I/O to retrieve SSURGO tables when - lonlatis provided.
- Emits log messages (warnings/info) when attaching nodes, resolving thickness controls, or skipping missing columns. 
- Caches the computed soil profile in the helper during execution; the in-memory APSIM tree remains modified after return. 
- Does not write files; call - save()on the model if you want to persist changes.
- The existing soil-profile structure is completed override by the newly generated soil profile. So, variables like soil thickness, number of soil layers, etc. might be different from the old one. 
 
 
 - This method checks whether the soil - SATis above or below- DULand decreases- DULvalues accordingly
- Need to call this method everytime - SATis changed, or- DULis changed accordingly.
 - simulations: str, name of the simulation where we want to adjust DUL and SAT according.- returns:- model the object for method chaining - @deprecated and will be removed in the future versions
- Updates soil parameters and configurations for downloaded soil data in simulation models. - This method adjusts soil physical and organic parameters based on provided soil tables and applies these adjustments to specified simulation models. - Parameters: - soil_tables(list): A list containing soil data tables. Expected to contain: see the naming convention in the for APSIM - [0]: DataFrame with physical soil parameters. - [1]: DataFrame with organic soil parameters. - [2]: DataFrame with crop-specific soil parameters. - simulation_names (list of str): Names or identifiers for the simulations to be updated.s- Returns: - self: Returns an instance of the class for - chainingmethods.- This method directly modifies the simulation instances found by - find_simulationsmethod calls, updating physical and organic soil properties, as well as crop-specific parameters like lower limit (- LL), drain upper limit (- DUL), saturation (- SAT), bulk density (- BD), hydraulic conductivity at saturation (- KS), and more based on the provided soil tables.
 - ->> key-word argument - set_sw_con: Boolean, set the drainage coefficient for each layer- adJust_kl:: Bollean, adjust, kl based on productivity index- CultvarName: cultivar name which is in the sowing module for adjusting the rue- tillage: specify whether you will be carried to adjust some physical parameters- spin_up(self, report_name: str = 'Report', start=None, end=None, spin_var='Carbon', simulations=None)
 - Perform a spin-up operation on the aPSim model. - This method is used to simulate a spin-up operation in an aPSim model. During a spin-up, various soil properties or _variables may be adjusted based on the simulation results. - Parameters:- report_name: str, optional (default: ‘Report’)
- The name of the aPSim report to be used for simulation results. 
- start: str, optional
- The start date for the simulation (e.g., ‘01-01-2023’). If provided, it will change the simulation start date. 
- end: str, optional
- The end date for the simulation (e.g., ‘3-12-2023’). If provided, it will change the simulation end date. 
- spin_var: str, optional (default: ‘Carbon’). the difference between the start and end date will determine the spin-up period
- The variable representing the child of spin-up operation. Supported values are ‘Carbon’ or ‘DUL’. 
 - Returns:- selfApsimModel
- The modified - ApsimModelobject after the spin-up operation. you could call- save_editedfile and save it to your specified location, but you can also proceed with the simulation
 - read_apsimx_data(self, table=None)
 - Read APSIM NG datastore for the current model. Raises FileNotFoundError if the model was initialized from default models because those need to be executed first to generate a database. - The rationale for this method is that you can just access the results from the previous session without running it if the database is in the same location as the apsimx file. - Since apsimNGpy clones the apsimx file, the original file is kept with attribute name - _model, that is what is being used to access the dataset- table: (str) name of the database table to read if none of all tables are returned - Returns: pandas.DataFrame - KeyError: if table is not found in the database - property simulations(inherited)
 - Retrieve simulation nodes in the APSIMx - Model.Core.Simulationsobject.- We search all-Models.Core.Simulation in the scope of Model.Core.Simulations. Please note the difference Simulations is the whole json object Simulation is the child with the field zones, crops, soils and managers. - Any structure of apsimx file can be handled. - Note - The simulations are c# referenced objects, and their manipulation maybe for advanced users only. - property simulation_names(inherited)
 - @deprecated will be removed in future releases. Please use inspect_model function instead. - retrieves the name of the simulations in the APSIMx file @return: list of simulation names - restart_model(self, model_info=None) (inherited)
 - Parameters:- model_info: collections.NamedTuple.
- A named tuple object returned by - load_apsim_modelfrom the- model_loadermodule.
 - Notes: - This parameter is crucial whenever we need to - reinitializethe model, especially after updating management practices or editing the file. - In some cases, this method is executed automatically. - If- model_infois not specified, the simulation will be reinitialized from- self.- This function is called by - save_edited_file,- save' and ``update_mgt`.- return:
- self 
 - save(self, file_name: 'Union[str, Path, None]' = None, reload=True) (inherited)
 - Saves the current APSIM NG model ( - Simulations) to disk and refresh runtime state.- This method writes the model to a file, using a version-aware strategy: - After writing, the model is recompiled via - recompile(self)()and the in-memory instance is refreshed using- restart_model(), ensuring the object graph reflects the just-saved state. This is now only impozed if the user specified- relaod = True.- Parameters- file_namestr or pathlib.Path, optional
- Output path for the saved model file. If omitted ( - None), the method uses the instance’s existing- path. The resolved path is also written back to instance- pathattribute for consistency if reload is True.
- reload: bool Optional default is True
- resets the reference path to the one provided after serializing to disk. This implies that the instance - pathwill be the provided- file_name
 - Returns- Self
- The same model/manager instance to support method chaining. 
 - Raises- OSError
- If the file cannot be written due to I/O errors, permissions, or invalid path. 
- AttributeError
- If required attributes (e.g., - self.Simulations) or methods are missing.
- Exception
- Any exception propagated by - save_model_to_file(),- recompile(), or- restart_model().
 - Side Effects- Sets - self.pathto the resolved output path (string).
- Writes the model file to disk (overwrites if it exists). 
- If reload is True (default), recompiles the model and restarts the in-memory instance. 
 - Notes- Path normalization: The path is stringified via - str(file_name)just in case it is a pathlib object.
- Reload semantics: Post-save recompilation and restart ensure any code generation or cached reflection is refreshed to match the serialized model. 
 - Examples- check the current path before saving the model
- >>> from apsimNGpy.core.apsim import ApsimModel >>> from pathlib import Path >>> model = ApsimModel("Maize", out_path='saved_maize.apsimx') >>> model.path scratch\saved_maize.apsimx 
- Save to a new path and continue working with the refreshed instance
- >>> model.save(file_name='out_maize.apsimx', reload=True) # check the path >>> model.path 'out_maize.apsimx' # possible to run again the refreshed model. >>> model.run() 
- Save to a new path without refreshing the instance path
- >>> model = ApsimModel("Maize", out_path='saved_maize.apsimx') >>> model.save(file_name='out_maize.apsimx', reload=False) # check the current reference path for the model. >>> model.path 'scratch\saved_maize.apsimx' # When reload is False, the original referenced path remains as shown above 
 - As shown above, everything is saved in the scratch folder; if the path is not abolutely provided, e.g., a relative path. If the path is not provided as shown below, the reference path is the current path for the isntance model. - >>> model = ApsimModel("Maize", out_path='saved_maize.apsimx') >>> model.path 'scratch\saved_maize.apsimx' # save the model without providing the path. >>> model.save()# uses the default, in this case the defaul path is the existing path >>> model.path 'scratch\saved_maize.apsimx' - In the above case, both reload = - Falseor- True, will produce the same reference path for the live instance class.- property results(inherited)
 - Legacy method for retrieving simulation results. - This method is implemented as a - propertyto enable lazy loading—results are only loaded into memory when explicitly accessed. This design helps optimize- memoryusage, especially for- largesimulations.- It must be called only after invoking - run(). If accessed before the simulation is run, it will raise an error.- Notes- The - run()method should be called with a valid- report nameor a list of report names.
- If - report_namesis not provided (i.e.,- None), the system will inspect the model and automatically detect all available report components. These reports will then be used to collect the data.
- If multiple report names are used, their corresponding data tables will be concatenated along the rows. 
 - Returns- pd.DataFrame
- A DataFrame containing the simulation output results. 
 - Examples- >>> from apsimNGpy.core.apsim import ApsimModel # create an instance of ApsimModel class >>> model = ApsimModel("Maize", out_path="my_maize_model.apsimx") # run the simulation >>> model.run() # get the results >>> df = model.results # do something with the results e.g. get the mean of numeric columns >>> df.mean(numeric_only=True) Out[12]: CheckpointID 1.000000 SimulationID 1.000000 Maize.AboveGround.Wt 1225.099950 Maize.AboveGround.N 12.381196 Yield 5636.529504 Maize.Grain.Wt 563.652950 Maize.Grain.Size 0.284941 Maize.Grain.NumberFunction 1986.770519 Maize.Grain.Total.Wt 563.652950 Maize.Grain.N 7.459296 Maize.Total.Wt 1340.837427 - If there are more than one database tables or - reportsas called in APSIM, results are concatenated along the axis 0, implying along rows. The example below mimics this scenario.- >>> model.add_db_table( ... variable_spec=['[Clock].Today.Year as year', ... 'sum([Soil].Nutrient.TotalC)/1000 from 01-jan to [clock].Today as soc'], ... rename='soc' ... ) # inspect the reports >>> model.inspect_model('Models.Report', fullpath=False) ['Report', 'soc'] >>> model.run() >>> model.results CheckpointID SimulationID Zone ... source_table year soc 0 1 1 Field ... Report NaN NaN 1 1 1 Field ... Report NaN NaN 2 1 1 Field ... Report NaN NaN 3 1 1 Field ... Report NaN NaN 4 1 1 Field ... Report NaN NaN 5 1 1 Field ... Report NaN NaN 6 1 1 Field ... Report NaN NaN 7 1 1 Field ... Report NaN NaN 8 1 1 Field ... Report NaN NaN 9 1 1 Field ... Report NaN NaN 10 1 1 Field ... soc 1990.0 77.831512 11 1 1 Field ... soc 1991.0 78.501766 12 1 1 Field ... soc 1992.0 78.916339 13 1 1 Field ... soc 1993.0 78.707094 14 1 1 Field ... soc 1994.0 78.191686 15 1 1 Field ... soc 1995.0 78.573085 16 1 1 Field ... soc 1996.0 78.724598 17 1 1 Field ... soc 1997.0 79.043935 18 1 1 Field ... soc 1998.0 78.343111 19 1 1 Field ... soc 1999.0 78.872767 20 1 1 Field ... soc 2000.0 79.916413 [21 rows x 17 columns] - By default all the tables are returned and the column - source_tabletells us the source table for each row. Since- resultsis a property attribute, which does not take in any argument, we can only decide this when calling the- runmethod as shown below.- >>> model.run(report_name='soc') >>> model.results CheckpointID SimulationID Zone year soc source_table 0 1 1 Field 1990.0 77.831512 soc 1 1 1 Field 1991.0 78.501766 soc 2 1 1 Field 1992.0 78.916339 soc 3 1 1 Field 1993.0 78.707094 soc 4 1 1 Field 1994.0 78.191686 soc 5 1 1 Field 1995.0 78.573085 soc 6 1 1 Field 1996.0 78.724598 soc 7 1 1 Field 1997.0 79.043935 soc 8 1 1 Field 1998.0 78.343111 soc 9 1 1 Field 1999.0 78.872767 soc 10 1 1 Field 2000.0 79.916413 soc - The above example has dataset only from one database table specified at run time. - See also - Related API: - get_simulated_output().- get_simulated_output(self, report_names: 'Union[str, list]', axis=0, **kwargs)
 - Reads report data from CSV files generated by the simulation. More Advanced table-merging arguments will be introduced soon. - Parameters:- report_names: (str, iterable)
- Name or list names of report tables to read. These should match the report names in the simulation output. 
- axis: int, Optional. Default to 0
- concatenation axis numbers for multiple reports or database tables. if axis is 0, source_table column is populated to show source of the data for each row 
 - Returns:- pd.DataFrame
- Concatenated DataFrame containing the data from the specified reports. 
 - Raises:- ValueError
- If any of the requested report names are not found in the available tables. 
- RuntimeError
- If the simulation has not been - runsuccessfully before attempting to read data.
 - Examples- >>> from apsimNGpy.core.apsim import ApsimModel >>> model = ApsimModel(model='Maize') # replace with your path to the apsim template model >>> model.run() # if we are going to use get_simulated_output, no need to provide the report name in ``run()`` method >>> df = model.get_simulated_output(report_names="Report") SimulationName SimulationID CheckpointID ... Maize.Total.Wt Yield Zone 0 Simulation 1 1 ... 1728.427 8469.616 Field 1 Simulation 1 1 ... 920.854 4668.505 Field 2 Simulation 1 1 ... 204.118 555.047 Field 3 Simulation 1 1 ... 869.180 3504.000 Field 4 Simulation 1 1 ... 1665.475 7820.075 Field 5 Simulation 1 1 ... 2124.740 8823.517 Field 6 Simulation 1 1 ... 1235.469 3587.101 Field 7 Simulation 1 1 ... 951.808 2939.152 Field 8 Simulation 1 1 ... 1986.968 8379.435 Field 9 Simulation 1 1 ... 1689.966 7370.301 Field [10 rows x 16 columns] - This method also handles more than one reports as shown below. - >>> model.add_db_table( ... variable_spec=[ ... '[Clock].Today.Year as year', ... 'sum([Soil].Nutrient.TotalC)/1000 from 01-jan to [clock].Today as soc' ... ], ... rename='soc' ... ) # inspect the reports >>> model.inspect_model('Models.Report', fullpath=False) ['Report', 'soc'] >>> model.run() >>> model.get_simulated_output(["soc", "Report"], axis=0) CheckpointID SimulationID ... Maize.Grain.N Maize.Total.Wt 0 1 1 ... NaN NaN 1 1 1 ... NaN NaN 2 1 1 ... NaN NaN 3 1 1 ... NaN NaN 4 1 1 ... NaN NaN 5 1 1 ... NaN NaN 6 1 1 ... NaN NaN 7 1 1 ... NaN NaN 8 1 1 ... NaN NaN 9 1 1 ... NaN NaN 10 1 1 ... NaN NaN 11 1 1 ... 11.178291 1728.427114 12 1 1 ... 6.226327 922.393712 13 1 1 ... 0.752357 204.108770 14 1 1 ... 4.886844 869.242545 15 1 1 ... 10.463854 1665.483701 16 1 1 ... 11.253916 2124.739830 17 1 1 ... 5.044417 1261.674967 18 1 1 ... 3.955080 951.303260 19 1 1 ... 11.080878 1987.106980 20 1 1 ... 9.751001 1693.893386 [21 rows x 17 columns] - >>> model.get_simulated_output(['soc', 'Report'], axis=1) CheckpointID SimulationID ... Maize.Grain.N Maize.Total.Wt 0 1 1 ... 11.178291 1728.427114 1 1 1 ... 6.226327 922.393712 2 1 1 ... 0.752357 204.108770 3 1 1 ... 4.886844 869.242545 4 1 1 ... 10.463854 1665.483701 5 1 1 ... 11.253916 2124.739830 6 1 1 ... 5.044417 1261.674967 7 1 1 ... 3.955080 951.303260 8 1 1 ... 11.080878 1987.106980 9 1 1 ... 9.751001 1693.893386 10 1 1 ... NaN NaN [11 rows x 19 columns] - See also - Related API: - results.- run(self, report_name: 'Union[tuple, list, str]' = None, simulations: 'Union[tuple, list]' = None, clean_up: 'bool' = True, verbose: 'bool' = False, timeout: 'int' = 800, **kwargs)
- Run APSIM model simulations to write the results either to SQLite data base or csv file. Does not collect the
- simulated output inot memory. For this purpose. Please see related APIs: - resultsand- get_simulated_output().
 - Parameters- report_name: Union[tuple, list, str], optional
- Defaults to APSIM default Report Name if not specified. - If iterable, all report tables are read and aggregated into one DataFrame. 
- simulations: Union[tuple, list], optional
- List of simulation names to run. If None, runs all simulations. 
- clean_up: bool, optional
- If True, removes the existing database before running. 
- verbose: bool, optional
- If True, enables verbose output for debugging. The method continues with debugging info anyway if the run was unsuccessful 
- timeout: int, defualt is 800 seconds
- Enforces a timeout and returns a CompletedProcess-like object. 
- kwargs: **dict
- Additional keyword arguments, e.g., to_csv=True, use this flag to correct results from a csv file directly stored at the location of the running apsimx file. 
 - Warning:- In my experience with Models.exe, CSV outputs are not always overwritten; after edits, stale results can persist. Proceed with caution. - Returns- Instance of the respective model class e.g., ApsimModel, ExperimentManager. 
 - RuntimeError
- Raised if the - APSIMrun is unsuccessful. Common causes include- missing meteorological files, mismatched simulation- startdates with- weatherdata, or other- configuration issues.
 - Example: - Instantiate an - apsimNGpy.core.apsim.ApsimModelobject and run:- from apsimNGpy.core.apsim import ApsimModel model = ApsimModel(model= 'Maize')# replace with your path to the apsim template model model.run(report_name = "Report") # check if the run was successful model.ran_ok 'True' - Note - Updates the - ran_okflag to- Trueif no error was encountered.- See also - Related APIs: - resultsand- get_simulated_output().- rename_model(self, model_type, *, old_name, new_name) (inherited)
- Renames a model within the APSIM simulation tree. - This method searches for a model of the specified type and current name, then updates its name to the new one provided. After renaming, it saves the updated simulation file to enforce the changes. - model_typestr
- The type of the model to rename (e.g., “Manager”, “Clock”, etc.). 
- old_namestr
- The current name of the model to be renamed. 
- new_namestr
- The new name to assign to the model. 
 - selfobject
- Returns the modified object to allow for method chaining. 
 - ValueError
- If the model of the specified type and name is not found. 
 - Tip - This method uses - get_or_check_modelwith action=’get’ to locate the model, and then updates the model’s- Nameattribute. The model is serialized using the- save()immediately after to apply and enfoce the change.- >>> from apsimNGpy.core.apsim import ApsimModel >>> model = ApsimModel(model = 'Maize', out_path='my_maize.apsimx') >>> model.rename_model(model_type="Models.Core.Simulation", old_name ='Simulation', new_name='my_simulation') # check if it has been successfully renamed >>> model.inspect_model(model_type='Models.Core.Simulation', fullpath = False) ['my_simulation'] # The alternative is to use model.inspect_file to see your changes >>> model.inspect_file() └── Simulations: .Simulations ├── DataStore: .Simulations.DataStore └── my_simulation: .Simulations.my_simulation ├── Clock: .Simulations.my_simulation.Clock ├── Field: .Simulations.my_simulation.Field │ ├── Fertilise at sowing: .Simulations.my_simulation.Field.Fertilise at sowing │ ├── Fertiliser: .Simulations.my_simulation.Field.Fertiliser │ ├── Harvest: .Simulations.my_simulation.Field.Harvest │ ├── Maize: .Simulations.my_simulation.Field.Maize │ ├── Report: .Simulations.my_simulation.Field.Report │ ├── Soil: .Simulations.my_simulation.Field.Soil │ │ ├── Chemical: .Simulations.my_simulation.Field.Soil.Chemical │ │ ├── NH4: .Simulations.my_simulation.Field.Soil.NH4 │ │ ├── NO3: .Simulations.my_simulation.Field.Soil.NO3 │ │ ├── Organic: .Simulations.my_simulation.Field.Soil.Organic │ │ ├── Physical: .Simulations.my_simulation.Field.Soil.Physical │ │ │ └── MaizeSoil: .Simulations.my_simulation.Field.Soil.Physical.MaizeSoil │ │ ├── Urea: .Simulations.my_simulation.Field.Soil.Urea │ │ └── Water: .Simulations.my_simulation.Field.Soil.Water │ ├── Sow using a variable rule: .Simulations.my_simulation.Field.Sow using a variable rule │ └── SurfaceOrganicMatter: .Simulations.my_simulation.Field.SurfaceOrganicMatter ├── Graph: .Simulations.my_simulation.Graph │ └── Series: .Simulations.my_simulation.Graph.Series ├── MicroClimate: .Simulations.my_simulation.MicroClimate ├── SoilArbitrator: .Simulations.my_simulation.SoilArbitrator ├── Summary: .Simulations.my_simulation.Summary └── Weather: .Simulations.my_simulation.Weather 
 - See also - Related APIs: - add_model(),- clone_model(), and- move_model().- clone_model(self, model_type, model_name, adoptive_parent_type, rename=None, adoptive_parent_name=None) (inherited)
 - Clone an existing - modeland move it to a specified parent within the simulation structure. The function modifies the simulation structure by adding the cloned model to the designated parent.- This function is useful when a model instance needs to be duplicated and repositioned in the - APSIMsimulation hierarchy without manually redefining its structure.- Parameters:- model_type: Models
- The type of the model to be cloned, e.g., - Models.Simulationor- Models.Clock.
- model_name: str
- The unique identification name of the model instance to be cloned, e.g., - "clock1".
- adoptive_parent_type: Models
- The type of the new parent model where the cloned model will be placed. 
- rename: str, optional
- The new name for the cloned model. If not provided, the clone will be renamed using the original name with a - _clonesuffix.
- adoptive_parent_name: str, optional
- The name of the parent model where the cloned model should be moved. If not provided, the model will be placed under the default parent of the specified type. 
- in_place: bool, optional
- If - True, the cloned model remains in the same location but is duplicated. Defaults to- False.
 - Returns:- None - Example:- Create a cloned version of - "clock1"and place it under- "Simulation"with the new name- "new_clock:- >>> from apsimNGpy.core.apsim import ApsimModel >>> model = ApsimModel('Maize', out_path='my_maize.apsimx') >>> model.clone_model(model_type='Models.Core.Simulation', model_name="Simulation", ... rename="Sim2", adoptive_parent_type = 'Models.Core.Simulations', ... adoptive_parent_name='Simulations') >>> model.inspect_file() └── Simulations: .Simulations ├── DataStore: .Simulations.DataStore ├── Sim2: .Simulations.Sim2 │ ├── Clock: .Simulations.Sim2.Clock │ ├── Field: .Simulations.Sim2.Field │ │ ├── Fertilise at sowing: .Simulations.Sim2.Field.Fertilise at sowing │ │ ├── Fertiliser: .Simulations.Sim2.Field.Fertiliser │ │ ├── Harvest: .Simulations.Sim2.Field.Harvest │ │ ├── Maize: .Simulations.Sim2.Field.Maize │ │ ├── Report: .Simulations.Sim2.Field.Report │ │ ├── Soil: .Simulations.Sim2.Field.Soil │ │ │ ├── Chemical: .Simulations.Sim2.Field.Soil.Chemical │ │ │ ├── NH4: .Simulations.Sim2.Field.Soil.NH4 │ │ │ ├── NO3: .Simulations.Sim2.Field.Soil.NO3 │ │ │ ├── Organic: .Simulations.Sim2.Field.Soil.Organic │ │ │ ├── Physical: .Simulations.Sim2.Field.Soil.Physical │ │ │ │ └── MaizeSoil: .Simulations.Sim2.Field.Soil.Physical.MaizeSoil │ │ │ ├── Urea: .Simulations.Sim2.Field.Soil.Urea │ │ │ └── Water: .Simulations.Sim2.Field.Soil.Water │ │ ├── Sow using a variable rule: .Simulations.Sim2.Field.Sow using a variable rule │ │ ├── SurfaceOrganicMatter: .Simulations.Sim2.Field.SurfaceOrganicMatter │ │ └── soc_table: .Simulations.Sim2.Field.soc_table │ ├── Graph: .Simulations.Sim2.Graph │ │ └── Series: .Simulations.Sim2.Graph.Series │ ├── MicroClimate: .Simulations.Sim2.MicroClimate │ ├── SoilArbitrator: .Simulations.Sim2.SoilArbitrator │ ├── Summary: .Simulations.Sim2.Summary │ └── Weather: .Simulations.Sim2.Weather └── Simulation: .Simulations.Simulation ├── Clock: .Simulations.Simulation.Clock ├── Field: .Simulations.Simulation.Field │ ├── Fertilise at sowing: .Simulations.Simulation.Field.Fertilise at sowing │ ├── Fertiliser: .Simulations.Simulation.Field.Fertiliser │ ├── Harvest: .Simulations.Simulation.Field.Harvest │ ├── Maize: .Simulations.Simulation.Field.Maize │ ├── Report: .Simulations.Simulation.Field.Report │ ├── Soil: .Simulations.Simulation.Field.Soil │ │ ├── Chemical: .Simulations.Simulation.Field.Soil.Chemical │ │ ├── NH4: .Simulations.Simulation.Field.Soil.NH4 │ │ ├── NO3: .Simulations.Simulation.Field.Soil.NO3 │ │ ├── Organic: .Simulations.Simulation.Field.Soil.Organic │ │ ├── Physical: .Simulations.Simulation.Field.Soil.Physical │ │ │ └── MaizeSoil: .Simulations.Simulation.Field.Soil.Physical.MaizeSoil │ │ ├── Urea: .Simulations.Simulation.Field.Soil.Urea │ │ └── Water: .Simulations.Simulation.Field.Soil.Water │ ├── Sow using a variable rule: .Simulations.Simulation.Field.Sow using a variable rule │ ├── SurfaceOrganicMatter: .Simulations.Simulation.Field.SurfaceOrganicMatter │ └── soc_table: .Simulations.Simulation.Field.soc_table ├── Graph: .Simulations.Simulation.Graph │ └── Series: .Simulations.Simulation.Graph.Series ├── MicroClimate: .Simulations.Simulation.MicroClimate ├── SoilArbitrator: .Simulations.Simulation.SoilArbitrator ├── Summary: .Simulations.Simulation.Summary └── Weather: .Simulations.Simulation.Weather - See also - Related APIs: - add_model()and- move_model().- static find_model(model_name: 'str') (inherited)
 - Find a model from the Models namespace and return its path. - Parameters:- model_name: (str)
- The name of the model to find. 
- model_namespace: (object, optional):
- The root namespace (defaults to Models). 
- path: (str, optional)
- The accumulated path to the model. 
- Returns:
- str: The full path to the model if found, otherwise None. 
 - Example:- >>> from apsimNGpy import core # doctest: >>> model =core.apsim.ApsimModel(model = "Maize", out_path ='my_maize.apsimx') >>> model.find_model("Weather") 'Models.Climate.Weather' >>> model.find_model("Clock") 'Models.Clock' - add_model(self, model_type, adoptive_parent, rename=None, adoptive_parent_name=None, verbose=False, source='Models', source_model_name=None, override=True, **kwargs) (inherited)
 - Adds a model to the Models Simulations namespace. - Some models are restricted to specific parent models, meaning they can only be added to compatible models. For example, a Clock model cannot be added to a Soil model. - Parameters:- model_type: (str or Models object)
- The type of model to add, e.g., - Models.Clockor just- "Clock". if the APSIM Models namespace is exposed to the current script, then model_class can be Models.Clock without strings quotes
- rename (str):
- The new name for the model. 
- adoptive_parent: (Models object)
- The target parent where the model will be added or moved e.g - Models.Clockor- Clockas string all are valid
- adoptive_parent_name: (Models object, optional)
- Specifies the parent name for precise location. e.g., - Models.Core.Simulationor- Simulationsall are valid
- source: Models, str, CoreModel, ApsimModel object: defaults to Models namespace.
- The source can be an existing Models or string name to point to one of the default model examples, which we can extract the model from 
- override: bool, optional defaults to True.
- When - True(recommended), it deletes any model with the same name and type at the suggested parent location before adding the new model if- Falseand proposed model to be added exists at the parent location;- APSIMautomatically generates a new name for the newly added model. This is not recommended.
- Returns:
- None: 
 - Modelsare modified in place, so models retains the same reference.- Caution - Added models from - Models namespaceare initially empty. Additional configuration is required to set parameters. For example, after adding a Clock module, you must set the start and end dates.- Example- >>> from apsimNGpy import core >>> from apsimNGpy.core.core import Models >>> model = core.apsim.ApsimModel("Maize") >>> model.remove_model(Models.Clock) # first delete the model >>> model.add_model(Models.Clock, adoptive_parent=Models.Core.Simulation, rename='Clock_replaced', verbose=False) - >>> model.add_model(model_class=Models.Core.Simulation, adoptive_parent=Models.Core.Simulations, rename='Iowa') - >>> model.preview_simulation() - >>> model.add_model( ... Models.Core.Simulation, ... adoptive_parent='Simulations', ... rename='soybean_replaced', ... source='Soybean') # basically adding another simulation from soybean to the maize simulation - See also - Related APIs: - clone_model()and- move_model().- detect_model_type(self, model_instance: 'Union[str, Models]') (inherited)
 - Detects the model type from a given APSIM model instance or path string. - edit_model_by_path(self, path: 'str', **kwargs) (inherited)
 - Edit a model component located by an APSIM path, dispatching to type-specific editors. - This method resolves a node under - instance.Simulationsusing an APSIM path, then edits that node by delegating to an editor based on the node’s runtime type. It supports common APSIM NG components (e.g., Weather, Manager, Cultivar, Clock, Soil subcomponents, Report, SurfaceOrganicMatter). Unsupported types raise- NotImplementedError.- Parameters- pathstr
- APSIM path to a target node under - self.Simulations(e.g., ‘.Simulations.Simulations.Weather’ or a similar canonical path).
 - kwargs- Additional keyword arguments specific to the model type. Atleast one key word argument is required. These vary by component: - Models.Climate.Weather:
- weather_file(str): Path to the weather- .metfile.
- Models.Clock:
- Date properties such as - Startand- Endin ISO format (e.g., ‘2021-01-01’).
- Models.Manager:
- Variables to update in the Manager script using - update_mgt_by_path.
- Soils.Physical | Soils.Chemical | Soils.Organic | Soils.Water:
- Variables to replace using - replace_soils_values_by_path.- Valid - parametersare shown below;- Soil Model Type - Supported key word arguments - Physical - AirDry, BD, DUL, DULmm, Depth, DepthMidPoints, KS, LL15, LL15mm, PAWC, PAWCmm, SAT, SATmm, SW, SWmm, Thickness, ThicknessCumulative - Organic - CNR, Carbon, Depth, FBiom, FInert, FOM, Nitrogen, SoilCNRatio, Thickness - Chemical - Depth, PH, Thickness 
- Models.Report:
- report_name (str):
- Name of the report model (optional depending on structure). 
- variable_spec` (list[str] or str):
- Variables to include in the report. 
- set_event_names` (list[str], optional):
- Events that trigger the report. 
 
- Models.PMF.Cultivar:
- commands (str):
- APSIM path to the cultivar parameter to update. 
- values: (Any)
- Value to assign. 
- cultivar_manager: (str)
- Name of the Manager script managing the cultivar, which must contain the - CultivarNameparameter. Required to propagate updated cultivar values, as APSIM treats cultivars as read-only.
 
 - Warning - ValueError
- If the model instance is not found, required kwargs are missing, or - kwargsis empty.
- NotImplementedError
- If the logic for the specified - model_classis not implemented.
 - Examples- Edit a Manager script parameter: - model.edit_model_by_path( ".Simulations.Simulation.Field.Sow using a variable rule", verbose=True, Population=10) - Point a Weather component to a new - .metfile:- model.edit_model_by_path( path=".Simulations.Simulation.Weather", FileName="data/weather/Ames_2020.met") - Change Clock dates: - model.edit_model_by_path( ".Simulations.Simulation.Clock", StartDate="2020-01-01", EndDate="2020-12-31") - Update soil water properties at a specific path: - model.edit_model_by_path( ".Simulations.Simulation.Field.Soil.Physical", LL15="[0.26, 0.18, 0.10, 0.12]") - Apply cultivar edits across selected simulations: - model.edit_model_by_path( ".Simulations.Simulation.Field.Maize.CultivarFolder.mh18", simulations=("Sim_A", "Sim_B"), verbose=True, **{"Phenology.EmergencePhase.Photoperiod": "Short"} ) - See also - Related API: - edit_model().- edit_model(self, model_type: 'str', model_name: 'str', simulations: 'Union[str, list]' = 'all', verbose=False, **kwargs) (inherited)
 - Modify various APSIM model components by specifying the model type and name across given simulations. - Parameters- model_type: str, required
- Type of the model component to modify (e.g., ‘Clock’, ‘Manager’, ‘Soils.Physical’, etc.). 
- simulations: Union[str, list], optional
- A simulation name or list of simulation names in which to search. Defaults to all simulations in the model. 
- model_name: str, required
- Name of the model instance to modify. 
- verbose: bool, optional
- print the status of the editting activities 
 - kwargs- Additional keyword arguments specific to the model type. Atleast one key word argument is required. These vary by component: - Models.Climate.Weather:
- weather_file(str): Path to the weather- .metfile.
- Models.Clock:
- Date properties such as - Startand- Endin ISO format (e.g., ‘2021-01-01’).
- Models.Manager:
- Variables to update in the Manager script using - update_mgt_by_path.
- Soils.Physical | Soils.Chemical | Soils.Organic | Soils.Water:
- Variables to replace using - replace_soils_values_by_path.- Valid - parametersare shown below;- Soil Model Type - Supported key word arguments - Physical - AirDry, BD, DUL, DULmm, Depth, DepthMidPoints, KS, LL15, LL15mm, PAWC, PAWCmm, SAT, SATmm, SW, SWmm, Thickness, ThicknessCumulative - Organic - CNR, Carbon, Depth, FBiom, FInert, FOM, Nitrogen, SoilCNRatio, Thickness - Chemical - Depth, PH, Thickness 
- Models.Report:
- report_name (str):
- Name of the report model (optional depending on structure). 
- variable_spec` (list[str] or str):
- Variables to include in the report. 
- set_event_names` (list[str], optional):
- Events that trigger the report. 
 
- Models.PMF.Cultivar:
- commands (str):
- APSIM path to the cultivar parameter to update. 
- values: (Any)
- Value to assign. 
- cultivar_manager: (str)
- Name of the Manager script managing the cultivar, which must contain the - CultivarNameparameter. Required to propagate updated cultivar values, as APSIM treats cultivars as read-only.
 
 - Warning - ValueError
- If the model instance is not found, required kwargs are missing, or - kwargsis empty.
- NotImplementedError
- If the logic for the specified - model_classis not implemented.
 - Examples: - from apsimNGpy.core.apsim import ApsimModel model = ApsimModel(model='Maize') - Example of how to edit a cultivar model: - model.edit_model(model_type='Cultivar', simulations='Simulation', commands='[Phenology].Juvenile.Target.FixedValue', values=256, model_name='B_110', new_cultivar_name='B_110_edited', cultivar_manager='Sow using a variable rule') - Edit a soil organic matter module: - model.edit_model( model_type='Organic', simulations='Simulation', model_name='Organic', Carbon=1.23) - Edit multiple soil layers: - model.edit_model( model_type='Organic', simulations='Simulation', model_name='Organic', Carbon=[1.23, 1.0]) - Example of how to edit solute models: - model.edit_model( model_type='Solute', simulations='Simulation', model_name='NH4', InitialValues=0.2) model.edit_model( model_class='Solute', simulations='Simulation', model_name='Urea', InitialValues=0.002) - Edit a manager script: - model.edit_model( model_type='Manager', simulations='Simulation', model_name='Sow using a variable rule', population=8.4) - Edit surface organic matter parameters: - model.edit_model( model_type='SurfaceOrganicMatter', simulations='Simulation', model_name='SurfaceOrganicMatter', InitialResidueMass=2500) model.edit_model( model_type='SurfaceOrganicMatter', simulations='Simulation', model_name='SurfaceOrganicMatter', InitialCNR=85) - Edit Clock start and end dates: - model.edit_model( model_type='Clock', simulations='Simulation', model_name='Clock', Start='2021-01-01', End='2021-01-12') - Edit report _variables: - model.edit_model( model_type='Report', simulations='Simulation', model_name='Report', variable_spec='[Maize].AboveGround.Wt as abw') - Multiple report _variables: - model.edit_model( model_type='Report', simulations='Simulation', model_name='Report', variable_spec=[ '[Maize].AboveGround.Wt as abw', '[Maize].Grain.Total.Wt as grain_weight']) @param simulations: - See also - Related API: - edit_model_by_path().- add_report_variable(self, variable_spec: 'Union[list, str, tuple]', report_name: 'str' = None, set_event_names: 'Union[str, list]' = None) (inherited)
 - This adds a report variable to the end of other _variables, if you want to change the whole report use change_report - Parameters- variable_spec: str, required.
- list of text commands for the report _variables e.g., ‘[Clock].Today as Date’ 
- param report_name: str, optional.
- Name of the report variable if not specified, the first accessed report object will be altered 
- set_event_names: list or str, optional.
- A list of APSIM events that trigger the recording of _variables. Defaults to [‘[Clock].EndOfYear’] if not provided. 
 - Returns- returns instance of apsimNGpy.core.core.apsim.ApsimModel or apsimNGpy.core.core.apsim.CoreModel - Raise- raises an - ValueErrorif a report is not found- Examples- >>> from apsimNGpy.core.apsim import ApsimModel >>> model = ApsimModel('Maize') >>> model.add_report_variable(variable_spec = '[Clock].Today as Date', report_name = 'Report') # isnepct the report >>> model.inspect_model_parameters(model_type='Models.Report', model_name='Report') {'EventNames': ['[Maize].Harvesting'], 'VariableNames': ['[Clock].Today', '[Maize].Phenology.CurrentStageName', '[Maize].AboveGround.Wt', '[Maize].AboveGround.N', '[Maize].Grain.Total.Wt*10 as Yield', '[Maize].Grain.Wt', '[Maize].Grain.Size', '[Maize].Grain.NumberFunction', '[Maize].Grain.Total.Wt', '[Maize].Grain.N', '[Maize].Total.Wt', '[Clock].Today as Date']} The new report variable is appended at the end of the existing ones - See also - Related APIs: - remove_report_variable()and- add_db_table().- remove_report_variable(self, variable_spec: 'Union[list, tuple, str]', report_name: 'str | None' = None) (inherited)
 - Remove one or more variable expressions from an APSIM Report component. - Parameters- variable_specstr | list[str] | tuple[str, …]
- Variable expression(s) to remove, e.g. - "[Clock].Today"or- "[Clock].Today as Date". You may pass a single string or a list/tuple. Matching is done by exact text after whitespace normalization (consecutive spaces collapsed), so minor spacing differences are tolerated.
- report_namestr, optional
- Name of the Report component to modify. If - None, the default resolver (- self._get_report) is used to locate the target report.
 - Returns- list[str]
- The updated list of variable expressions remaining in the report (in original order, without duplicates). 
 - Notes- Variables not present are ignored (no error raised). 
- Order is preserved; duplicates are removed. 
- The model is saved at the end of this call. 
 - Examples- >>> model= CoreModel('Maize') >>> model.add_report_variable(variable_spec='[Clock].Today as Date', report_name='Report') >>> model.inspect_model_parameters('Models.Report', 'Report')['VariableNames'] ['[Clock].Today', '[Maize].Phenology.CurrentStageName', '[Maize].AboveGround.Wt', '[Maize].AboveGround.N', '[Maize].Grain.Total.Wt*10 as Yield', '[Maize].Grain.Wt', '[Maize].Grain.Size', '[Maize].Grain.NumberFunction', '[Maize].Grain.Total.Wt', '[Maize].Grain.N', '[Maize].Total.Wt', '[Clock].Today as Date'] >>> model.remove_report_variable(variable_spec='[Clock].Today as Date', report_name='Report') >>> model.inspect_model_parameters('Models.Report', 'Report')['VariableNames'] ['[Clock].Today', '[Maize].Phenology.CurrentStageName', '[Maize].AboveGround.Wt', '[Maize].AboveGround.N', '[Maize].Grain.Total.Wt*10 as Yield', '[Maize].Grain.Wt', '[Maize].Grain.Size', '[Maize].Grain.NumberFunction', '[Maize].Grain.Total.Wt', '[Maize].Grain.N', '[Maize].Total.Wt'] - See also - Related APIs: - add_report_variable()and- add_db_table().- remove_model(self, model_type: 'Models', model_name: 'str' = None) (inherited)
 - Removes a model from the APSIM Models.Simulations namespace. - model_type: Models
- The type of the model to remove (e.g., - Models.Clock). This parameter is required.
- model_name: str, optional
- The name of the specific model instance to remove (e.g., - "Clock"). If not provided, all models of the specified type may be removed.
 - Returns: - None - Example: - from apsimNGpy import core from apsimNGpy.core.core import Models model = core.base_data.load_default_simulations(crop = 'Maize') model.remove_model(Models.Clock) #deletes the clock node model.remove_model(Models.Climate.Weather) #deletes the weather node - See also - Related APIs: - clone_model()and- add_model().- move_model(self, model_type: 'Models', new_parent_type: 'Models', model_name: 'str' = None, new_parent_name: 'str' = None, verbose: 'bool' = False, simulations: 'Union[str, list]' = None) (inherited)
 - Args:- model_type: Models
- type of model tied to Models Namespace 
- new_parent_type: Models.
- New model parent type (Models) 
- model_name: str
- Name of the model e.g., Clock, or Clock2, whatever name that was given to the model 
- new_parent_name``: str
- The new parent names =Field2, this field is optional but important if you have nested simulations 
 - Returns:- returns instance of apsimNGpy.core.core.apsim.ApsimModel or apsimNGpy.core.core.apsim.CoreModel - replicate_file(self, k: 'int', path: 'os.PathLike' = None, suffix: 'str' = 'replica') (inherited)
 - Replicates a file - ktimes. Parameters ———- path:str default is None- If specified, the copies will be placed in that dir_path with incremented filenames. If no path is specified, copies are created in the same dir_path as the original file, also with incremented filenames. - k int:
- The number of copies to create. 
 - suffix: str, optional
- a suffix to attach with the copies. Default to “replicate” 
 
 - Returns:- A generator(str) is returned. 
 - get_crop_replacement(self, Crop) (inherited)
 - param Crop:
- crop to get the replacement 
- return:
- System.Collections.Generic.IEnumerable APSIM plant object 
 - inspect_model_parameters(self, model_type: 'Union[Models, str]', model_name: 'str', simulations: 'Union[str, list]' = <UserOptionMissing>, parameters: 'Union[list, set, tuple, str]' = 'all', **kwargs) (inherited)
 - Inspect the input parameters of a specific - APSIMmodel type instance within selected simulations.- This method consolidates functionality previously spread across - examine_management_info,- read_cultivar_params, and other inspectors, allowing a unified interface for querying parameters of interest across a wide range of APSIM models.- Parameters- model_type: str required
- The name of the model class to inspect (e.g., ‘Clock’, ‘Manager’, ‘Physical’, ‘Chemical’, ‘Water’, ‘Solute’). Shorthand names are accepted (e.g., ‘Clock’, ‘Weather’) as well as fully qualified names (e.g., ‘Models.Clock’, ‘Models.Climate.Weather’). 
- simulations: Union[str, list]
- A single simulation name or a list of simulation names within the APSIM context to inspect. 
- model_name: str
- The name of the specific model instance within each simulation. For example, if - model_class='Solute',- model_namemight be ‘NH4’, ‘Urea’, or another solute name.
- parameters: Union[str, set, list, tuple], optional
- A specific parameter or a collection of parameters to inspect. Defaults to - 'all', in which case all accessible attributes are returned. For layered models like Solute, valid parameters include- Depth,- InitialValues,- SoluteBD,- Thickness, etc.
- kwargs:
- Reserved for future compatibility; currently unused. 
 - Returns- Union[dict, list, pd.DataFrame, Any] The format depends on the model type as shown below: - Weather:
- file path(s) as string(s) 
- Clock:
- dictionary with start and end datetime objects (or a single datetime if only one is requested). 
- Manager:
- dictionary of script parameters. 
- Soil-related:
- pandas DataFrame of layered values. 
- Report:
- A dictionary with - VariableNamesand- EventNames.
 - Cultivar: dictionary of parameter strings. - Raises- ValueError
- If the specified model or simulation is not found or arguments are invalid. 
- NotImplementedError
- If the model type is unsupported by the current interface. 
 - Requirements- APSIM Next Generation Python bindings ( - apsimNGpy)
- Python 3.10+ 
 - Examples: - from apsimNGpy.core.apsim import ApsimModel model_instance = ApsimModel('Maize') - Inspect full soil - Organicprofile:- model_instance.inspect_model_parameters('Organic', simulations='Simulation', model_name='Organic') CNR Carbon Depth FBiom ... FOM Nitrogen SoilCNRatio Thickness 0 12.0 1.20 0-150 0.04 ... 347.129032 0.100 12.0 150.0 1 12.0 0.96 150-300 0.02 ... 270.344362 0.080 12.0 150.0 2 12.0 0.60 300-600 0.02 ... 163.972144 0.050 12.0 300.0 3 12.0 0.30 600-900 0.02 ... 99.454133 0.025 12.0 300.0 4 12.0 0.18 900-1200 0.01 ... 60.321981 0.015 12.0 300.0 5 12.0 0.12 1200-1500 0.01 ... 36.587131 0.010 12.0 300.0 6 12.0 0.12 1500-1800 0.01 ... 22.191217 0.010 12.0 300.0 [7 rows x 9 columns] - Inspect soil - Physicalprofile:- model_instance.inspect_model_parameters('Physical', simulations='Simulation', model_name='Physical') AirDry BD DUL ... SWmm Thickness ThicknessCumulative 0 0.130250 1.010565 0.521000 ... 78.150033 150.0 150.0 1 0.198689 1.071456 0.496723 ... 74.508522 150.0 300.0 2 0.280000 1.093939 0.488438 ... 146.531282 300.0 600.0 3 0.280000 1.158613 0.480297 ... 144.089091 300.0 900.0 4 0.280000 1.173012 0.471584 ... 141.475079 300.0 1200.0 5 0.280000 1.162873 0.457071 ... 137.121171 300.0 1500.0 6 0.280000 1.187495 0.452332 ... 135.699528 300.0 1800.0 [7 rows x 17 columns] - Inspect soil - Chemicalprofile:- model_instance.inspect_model_parameters('Chemical', simulations='Simulation', model_name='Chemical') Depth PH Thickness 0 0-150 8.0 150.0 1 150-300 8.0 150.0 2 300-600 8.0 300.0 3 600-900 8.0 300.0 4 900-1200 8.0 300.0 5 1200-1500 8.0 300.0 6 1500-1800 8.0 300.0 - Inspect one or more specific parameters: - model_instance.inspect_model_parameters('Organic', simulations='Simulation', model_name='Organic', parameters='Carbon') Carbon 0 1.20 1 0.96 2 0.60 3 0.30 4 0.18 5 0.12 6 0.12 - Inspect more than one specific properties: - model_instance.inspect_model_parameters('Organic', simulations='Simulation', model_name='Organic', parameters=['Carbon', 'CNR']) Carbon CNR 0 1.20 12.0 1 0.96 12.0 2 0.60 12.0 3 0.30 12.0 4 0.18 12.0 5 0.12 12.0 6 0.12 12.0 - Inspect Report module attributes: - model_instance.inspect_model_parameters('Report', simulations='Simulation', model_name='Report') {'EventNames': ['[Maize].Harvesting'], 'VariableNames': ['[Clock].Today', '[Maize].Phenology.CurrentStageName', '[Maize].AboveGround.Wt', '[Maize].AboveGround.N', '[Maize].Grain.Total.Wt*10 as Yield', '[Maize].Grain.Wt', '[Maize].Grain.Size', '[Maize].Grain.NumberFunction', '[Maize].Grain.Total.Wt', '[Maize].Grain.N', '[Maize].Total.Wt']} - Specify only EventNames: - model_instance.inspect_model_parameters(‘Report’, simulations=’Simulation’, model_name=’Report’, parameters=’EventNames’) {‘EventNames’: [‘[Maize].Harvesting’]} - Inspect a weather file path: - model_instance.inspect_model_parameters('Weather', simulations='Simulation', model_name='Weather') '%root%/Examples/WeatherFiles/AU_Dalby.met' - Inspect manager script parameters: - model_instance.inspect_model_parameters('Manager', simulations='Simulation', model_name='Sow using a variable rule') {'Crop': 'Maize', 'StartDate': '1-nov', 'EndDate': '10-jan', 'MinESW': '100.0', 'MinRain': '25.0', 'RainDays': '7', 'CultivarName': 'Dekalb_XL82', 'SowingDepth': '30.0', 'RowSpacing': '750.0', 'Population': '10'} - Inspect manager script by specifying one or more parameters: - model_instance.inspect_model_parameters('Manager', simulations='Simulation', model_name='Sow using a variable rule', parameters='Population') {'Population': '10'} - Inspect cultivar parameters: - model_instance.inspect_model_parameters('Cultivar', simulations='Simulation', model_name='B_110') # lists all path specifications for B_110 parameters abd their values model_instance.inspect_model_parameters('Cultivar', simulations='Simulation', model_name='B_110', parameters='[Phenology].Juvenile.Target.FixedValue') {'[Phenology].Juvenile.Target.FixedValue': '210'} - Inspect surface organic matter module: - model_instance.inspect_model_parameters('Models.Surface.SurfaceOrganicMatter', simulations='Simulation', model_name='SurfaceOrganicMatter') {'NH4': 0.0, 'InitialResidueMass': 500.0, 'StandingWt': 0.0, 'Cover': 0.0, 'LabileP': 0.0, 'LyingWt': 0.0, 'InitialCNR': 100.0, 'P': 0.0, 'InitialCPR': 0.0, 'SurfOM': <System.Collections.Generic.List[SurfOrganicMatterType] object at 0x000001DABDBB58C0>, 'C': 0.0, 'N': 0.0, 'NO3': 0.0} - Inspect a few parameters as needed: - model_instance.inspect_model_parameters('Models.Surface.SurfaceOrganicMatter', simulations='Simulation', ... model_name='SurfaceOrganicMatter', parameters={'InitialCNR', 'InitialResidueMass'}) {'InitialCNR': 100.0, 'InitialResidueMass': 500.0} - Inspect a clock: - model_instance.inspect_model_parameters('Clock', simulations='Simulation', model_name='Clock') {'End': datetime.datetime(2000, 12, 31, 0, 0), 'Start': datetime.datetime(1990, 1, 1, 0, 0)} - Inspect a few Clock parameters as needed: - model_instance.inspect_model_parameters('Clock', simulations='Simulation', model_name='Clock', parameters='End') datetime.datetime(2000, 12, 31, 0, 0) - Access specific components of the datetime object e.g., year, month, day, hour, minute: - model_instance.inspect_model_parameters('Clock', simulations='Simulation', model_name='Clock', parameters='Start').year # gets the start year only 1990 - Inspect solute models: - model_instance.inspect_model_parameters('Solute', simulations='Simulation', model_name='Urea') Depth InitialValues SoluteBD Thickness 0 0-150 0.0 1.010565 150.0 1 150-300 0.0 1.071456 150.0 2 300-600 0.0 1.093939 300.0 3 600-900 0.0 1.158613 300.0 4 900-1200 0.0 1.173012 300.0 5 1200-1500 0.0 1.162873 300.0 6 1500-1800 0.0 1.187495 300.0 model_instance.inspect_model_parameters('Solute', simulations='Simulation', model_name='NH4', parameters='InitialValues') InitialValues 0 0.1 1 0.1 2 0.1 3 0.1 4 0.1 5 0.1 6 0.1 - See also - Related API: - inspect_model_parameters_by_path()- inspect_model_parameters_by_path(self, path, *, parameters: 'Union[list, set, tuple, str]' = None) (inherited)
- Inspect and extract parameters from a model component specified by its path. - Parameters:- path: str required
- The path relative to the Models.Core.Simulations Node 
- parameters: Union[str, set, list, tuple], optional
- A specific parameter or a collection of parameters to inspect. Defaults to - 'all', in which case all accessible attributes are returned. For layered models like Solute, valid parameters include- Depth,- InitialValues,- SoluteBD,- Thickness, etc.
- kwargs:
- Reserved for future compatibility; currently unused. 
 - Returns- Union[dict, list, pd.DataFrame, Any] The format depends on the model type as shown below: - Weather:
- file path(s) as string(s) 
- Clock:
- dictionary with start and end datetime objects (or a single datetime if only one is requested). 
- Manager:
- dictionary of script parameters. 
- Soil-related:
- pandas DataFrame of layered values. 
- Report:
- A dictionary with - VariableNamesand- EventNames.
 - Cultivar: dictionary of parameter strings. - Raises- ValueError
- If the specified model or simulation is not found or arguments are invalid. 
- NotImplementedError
- If the model type is unsupported by the current interface. 
 - Requirements- APSIM Next Generation Python bindings ( - apsimNGpy)
- Python 3.10+ 
 
 - See also - Related API: - inspect_model_parameters()Others:- inspect_model(),- inspect_file()- edit_cultivar(self, *, CultivarName: 'str', commands: 'str', values: 'Any', **kwargs) (inherited)
 - @deprecated Edits the parameters of a given cultivar. we don’t need a simulation name for this unless if you are defining it in the manager section, if that it is the case, see update_mgt. - Requires:
- required a replacement for the crops 
 - Args: - CultivarName (str, required): Name of the cultivar (e.g., ‘laila’). 
- variable_spec (str, required): A strings representing the parameter paths to be edited. 
 - Returns: instance of the class CoreModel or ApsimModel - Example: - ('[Grain].MaximumGrainsPerCob.FixedValue', '[Phenology].GrainFilling.Target.FixedValue') - values: values for each command (e.g., (721, 760)). - update_cultivar(self, *, parameters: 'dict', simulations: 'Union[list, tuple]' = None, clear=False, **kwargs) (inherited)
 - Update cultivar parameters - parameters: (dict, required)
- dictionary of cultivar parameters to update. 
- simulationsstr optional
- List or tuples of simulation names to update if - Noneupdate all simulations.
- clear (bool, optional)
- If - Trueremove all existing parameters, by default- False.
 - recompile_edited_model(self, out_path: 'os.PathLike') (inherited)
 - Args:- out_path: os.PathLike object this method is called to convert the simulation object from ConverterReturnType to model like object- return:self- update_mgt_by_path(self, *, path: 'str', fmt='.', **kwargs) (inherited)
 - Parameters- path: str
- A complete node path to the script manager e.g. ‘.Simulations.Simulation.Field.Sow using a variable rule’ 
- fmt: str
- seperator for formatting the path e.g., “.”. Other characters can be used with caution, e.g., / and clearly declared in fmt argument. If you want to use the forward slash, it will be ‘/Simulations/Simulation/Field/Sow using a variable rule’, fmt = ‘/’ 
- **kwargs:
- Corresponding keyword arguments representing the paramters in the script manager and their values. Values is what you want to change to; Example here - Population=8.2, values should be entered with their corresponding data types e.g., int, float, bool,str etc.
 - Returns:- Instance of apsimNgpy.core.ApsimModel or apsimNgpy.core.experimentmanager.ExperimentManager - replace_model_from(self, model, model_type: 'str', model_name: 'str' = None, target_model_name: 'str' = None, simulations: 'str' = None) (inherited)
 - @deprecated and will be removed function has not been maintained for a long time, use it at your own risk - Replace a model, e.g., a soil model with another soil model from another APSIM model. The method assumes that the model to replace is already loaded in the current model and the same class as a source model. e.g., a soil node to soil node, clock node to clock node, et.c - Parameters:- model: Path to the APSIM model file or a CoreModel instance. - model_type: (str):
- Class name (as string) of the model to replace (e.g., “Soil”). 
- model_name: (str, optional)
- Name of the model instance to copy from the source model. If not provided, the first match is used. 
- target_model_name: (str, optional)
- Specific simulation name to target for replacement. Only used when replacing Simulation-level objects. 
- simulations (str, optional):
- Simulation(s) to operate on. If None, applies to all. 
 - Returns:
- self: To allow method chaining. 
- Raises:
- ValueError: If- model_classis “Simulations” which is not allowed for replacement.
 - update_mgt(self, *, management: 'Union[dict, tuple]', simulations: '[list, tuple]' = <UserOptionMissing>, out: '[Path, str]' = None, reload: 'bool' = True, **kwargs) (inherited)
 - Update management settings in the model. This method handles one management parameter at a time. - Parameters- management: dict or tuple
- A dictionary or tuple of management parameters to update. The dictionary should have ‘Name’ as the key for the management script’s name and corresponding values to update. Lists are not allowed as they are mutable and may cause issues with parallel processing. If a tuple is provided, it should be in the form (param_name, param_value). 
- simulations: list of str, optional
- List of simulation names to update. If - None, updates all simulations. This is not recommended for large numbers of simulations as it may result in a high computational load.
- out: str or pathlike, optional
- Path to save the edited model. If - None, uses the default output path specified in- self.out_pathor- self.model_info.path. No need to call- save_edited_fileafter updating, as this method handles saving.
 - Returns- Returns the instance of the respective model class for method chaining. - ..note: - Ensure that the `management` parameter is provided in the correct format to avoid errors. - This method does not perform `validation` on the provided `management` dictionary beyond checking for key existence. - If the specified management script or parameters do not exist, they will be ignored. - preview_simulation(self, watch=False) (inherited)
 - Open the current simulation in the APSIM Next Gen GUI. - This first saves the in-memory simulation to - out_pathand then launches the APSIM Next Gen GUI (via- get_apsim_bin_path()) so you can inspect the model tree and make quick edits side by side.- Parameters- watchbool, default False
- If True, Python will listen for GUI edits and sync them back into the model instance in (near) real time. This feature is experimental. 
 - Returns- None
- This function performs a side effect (opening the GUI) and does not return a value. 
 - Raises- FileNotFoundError
- If the file does not exist after - save().
- RuntimeError
- If the APSIM Next Gen executable cannot be located or the GUI fails to start. 
 - Tip - The file opened in the GUI is a saved copy of this Python object. Changes made in the GUI are not propagated back to the - ApsimModelinstance unless you set- watch=True. Otherwise, to continue working in Python with GUI edits, save the file in APSIM and re-load it, for example:- ApsimModel("gui_edited_file_path.apsimx") - Examples- 1. Preview only - from apsimNGpy.core.apsim import ApsimModel model = ApsimModel("Maize", out_path="test_.apsimx") model.preview_simulation()   - 2. Preview and edit simultaneously - After opening the APSIMX file in the GUI via the watching mode ( - watch=True), you can modify any parameters using GUI interface. The Example given below involved changing parameters such as Plant population (/m²), Cultivar to be sown, and Row spacing (mm) in the Sow using a variable rule script and finally, checked whether the changes were successful by inspecting the model.- model.preview_simulation(watch=True)   - Example console output when - watch=True:- 2025-10-24 13:05:08,480 - INFO - Watching for GUI edits... Save in APSIM to sync back. 2025-10-24 13:05:08,490 - INFO - Press Ctrl+C in this cell to stop. APSIM GUI saved. Syncing model... 2025-10-24 13:05:24,112 - INFO - Watching terminated successfully. - When - watch=True, follow the console instructions. One critical step is that you must press- Ctrl+Cto stop watching.- Checking if changes were successfully propagated back - model.inspect_model_parameters("Models.Manager", "Sow using a variable rule") - {'Crop': '[Maize]', 'StartDate': '1-nov', 'EndDate': '10-jan', 'MinESW': '100', 'MinRain': '25', 'RainDays': '7', 'CultivarName': 'B_95', 'SowingDepth': '25', 'RowSpacing': '700', 'Population': '4'}- Depending on your environment, you may need to close the GUI window to continue or follow the prompts shown after termination. - replace_met_file(self, *, weather_file: 'Union[Path, str]', simulations=<UserOptionMissing>, **kwargs) -> "'Self'" (inherited)
 - Deprecated since version 0.**x**: This helper will be removed in a future release. Prefer newer weather configuration utilities or set the - FileNameproperty on weather nodes directly.- Replace the - FileNameof every- Models.Climate.Weathernode under one or more simulations so they point to a new- .metfile.- This method traverses the APSIM NG model tree under each selected simulation and updates the weather component(s) in-place. Version-aware traversal is used: - If - APSIM_VERSION_NO > BASE_RELEASE_NOor- APSIM_VERSION_NO == GITHUB_RELEASE_NO: use- ModelTools.find_all_in_scope()to find- Models.Climate.Weathernodes.
- Otherwise: fall back to - sim.FindAllDescendants[Models.Climate.Weather]().
 - Parameters- weather_fileUnion[pathlib.Path, str]
- Path to the - .metfile. May be absolute or relative to the current working directory. The path must exist at call time; otherwise a- FileNotFoundErroris raised.
- simulationsAny, optional
- Simulation selector forwarded to - find_simulations(). If left as- MissingOption(default) (or if your implementation accepts- None), all simulations yielded by- find_simulations()are updated. Acceptable types depend on your- find_simulations()contract (e.g., iterable of names, single name, or sentinel).
- **kwargs
- Ignored. Reserved for backward compatibility and future extensions. 
 - Returns- Self
- The current model/manager instance to support method chaining. 
 - Raises- FileNotFoundError
- If - weather_filedoes not exist.
- Exception
- Any exception raised by - find_simulations()or underlying APSIM traversal utilities is propagated unchanged.
 - Side Effects- Mutates the model by setting - met.FileName = os.path.realpath(weather_file)for each matched- Models.Climate.Weathernode.- Notes- No-op safety: If a simulation has no Weather nodes, that simulation is silently skipped. 
- Path normalization: The stored path is the canonical real path ( - os.path.realpath).
- Thread/process safety: This operation mutates in-memory model state and is not inherently thread-safe. Coordinate external synchronization if calling concurrently. 
 - Examples- Update all simulations to use a local - Ames.met:- model.replace_met_file(weather_file="data/weather/Ames.met") - Update only selected simulations: - model.replace_met_file( weather_file=Path("~/wx/Boone.met").expanduser(), simulations=("Sim_A", "Sim_B") ) - See Also- find_simulations : Resolve and yield simulation objects by name/selector. ModelTools.find_all_in_scope : Scope-aware traversal utility. Models.Climate.Weather : APSIM NG weather component. - get_weather_from_file(self, weather_file, simulations=None)
 - Point targeted APSIM Weather nodes to a local - .metfile.- The function name mirrors the semantics of - get_weather_from_webbut sources the weather from disk. If the provided path lacks the- .metsuffix, it is appended. The file must exist on disk.- Parameters- weather_file: str | Path
- Path (absolute or relative) to a - .metfile. If the suffix is missing,- .metis appended. A- FileNotFoundErroris raised if the final path does not exist. The path is resolved to an absolute path to avoid ambiguity.
- simulations: None | str | Iterable[str], optional
- Which simulations to update: - - None(default): update all Weather nodes found under- Simulations. -- stror iterable of names: only update Weather nodes within the named- simulation(s). A - ValueErroris raised if a requested simulation has no Weather nodes.
 - Returns- Instance of the model for method chaining - Raises- FileNotFoundError
- If the resolved - .metfile does not exist.
- ValueError
- If any requested simulation exists but contains no Weather nodes. 
 - Side Effects- Sets - w.FileNamefor each targeted- Models.Climate.Weathernode to the resolved path of- weather_file. The file is not copied; only the path inside the APSIM document is changed.- Notes- APSIM resolves relative paths relative to the - .apsimxfile. Using an absolute path (the default here) reduces surprises across working directories.
- Replacement folders that contain Weather nodes are also updated when - simulationsis- None(i.e., “update everything in scope”).
 - Examples- Update all Weather nodes: - from apsimNGpy.core.apsim import ApsimModel model = ApsimModel("Maize") model.get_weather_from_file("data/ames_2020.met") - Update only two simulations (suffix added automatically): - model.get_weather_from_file("data/ames_2020", simulations=("Simulation",)) - See also - Related APIs: - edit_model()and- edit_model_by_path().- get_weather_from_web(self, lonlat: 'tuple', start: 'int', end: 'int', simulations=<UserOptionMissing>, source='nasa', filename=None) (inherited)
- Replaces the weather (met) file in the model using weather data fetched from an online source. Internally, calls get_weather_from_file after downloading the weather 
 - Parameters:- lonlat: tuple
- A tuple containing the longitude and latitude coordinates. 
- start: int
- Start date for the weather data retrieval. 
- end: int
- End date for the weather data retrieval. 
- simulations: str | list[str] default is all or None list of simulations or a singular simulation
- name, where to place the weather data, defaults to None, implying - allthe available simulations
- source: str default is ‘nasa’
- Source of the weather data. 
- filename: str default is generated using the base name of the apsimx file in use, and the start and
- end years Name of the file to save the retrieved data. If None, a default name is generated. 
- Returns:
- model object with the corresponding file replaced with the fetched weather data. 
 - Examples- >>> from apsimNGpy.core.apsim import ApsimModel >>> model = ApsimModel(model= "Maize") >>> model.get_weather_from_web(lonlat = (-93.885490, 42.060650), start = 1990, end = 2001) - Changing weather data with non-matching start and end dates in the simulation will lead to RuntimeErrors. To avoid this, first check the start and end date before proceeding as follows: - >>> dt = model.inspect_model_parameters(model_class='Clock', model_name='Clock', simulations='Simulation') >>> start, end = dt['Start'].year, dt['End'].year # output: 1990, 2000 - show_met_file_in_simulation(self, simulations: 'list' = None) (inherited)
 - Show weather file for all simulations - @deprecated: use inspect_model_parameters() instead - change_report(self, *, command: 'str', report_name='Report', simulations=None, set_DayAfterLastOutput=None, **kwargs) (inherited)
- Set APSIM report _variables for specified simulations. 
 - This function allows you to set the variable names for an APSIM report in one or more simulations. - Parameters- command: str
- The new report string that contains variable names. 
- report_name: str
- The name of the APSIM report to update defaults to Report. 
- simulations: list of str, optional
- A list of simulation names to update. If - None, the function will update the report for all simulations.
 - Returns- None - extract_soil_physical(self, simulations: '[tuple, list]' = None) (inherited)
 - Find physical soil - Parameters- simulation, optional
- Simulation name, if - Noneuse the first simulation.
 - Returns- APSIM Models.Soils.Physical object - extract_any_soil_physical(self, parameter, simulations: '[list, tuple]' = <UserOptionMissing>) (inherited)
 - Extracts soil physical parameters in the simulation - Args::
- parameter(_string_): string e.g. DUL, SAT- simulations(string, optional): Targeted simulation name. Defaults to None.
 - inspect_model(self, model_type: 'Union[str, Models]', fullpath=True, **kwargs) (inherited)
 - Inspect the model types and returns the model paths or names. - When is it needed?- useful if you want to identify the paths or name of the model for further editing the model e.g., with the - in edit_modelmethod.- Parameters- model_classtype | str
- The APSIM model type to search for. You may pass either a class (e.g., Models.Clock, Models.Manager) or a string. Strings can be short names (e.g., “Clock”, “Manager”) or fully qualified (e.g., “Models.Core.Simulation”, “Models.Climate.Weather”, “Models.Core.IPlant”). Please see from The list of classes or model types from the Models Namespace below. Red represents the modules, and this method - will throw an error if only a module is supplied. The list constitutes the classes or model types under each module - Models:
- Models.Clock 
- Models.Fertiliser 
- Models.Irrigation 
- Models.Manager 
- Models.Memo 
- Models.MicroClimate 
- Models.Operations 
- Models.Report 
- Models.Summary 
 
- Models.Climate:
- Models.Climate.Weather 
 
- Models.Core:
- Models.Core.Folder 
- Models.Core.Simulation 
- Models.Core.Simulations 
- Models.Core.Zone 
 
- Models.Factorial:
- Models.Factorial.Experiment 
- Models.Factorial.Factors 
- Models.Factorial.Permutation 
 
- Models.PMF:
- Models.PMF.Cultivar 
- Models.PMF.Plant 
 
- Models.Soils:
- Models.Soils.Arbitrator.SoilArbitrator 
- Models.Soils.CERESSoilTemperature 
- Models.Soils.Chemical 
- Models.Soils.Nutrients.Nutrient 
- Models.Soils.Organic 
- Models.Soils.Physical 
- Models.Soils.Sample 
- Models.Soils.Soil 
- Models.Soils.SoilCrop 
- Models.Soils.Solute 
- Models.Soils.Water 
 
- Models.Storage:
- Models.Storage.DataStore 
 
- Models.Surface:
- Models.Surface.SurfaceOrganicMatter 
 
- Models.WaterModel:
- Models.WaterModel.WaterBalance 
 
 
- fullpathbool, optional (default: False)
- If False, return the model name only. If True, return the model’s full path relative to the Simulations root. 
 - Returns- list[str]
- A list of model names or full paths, depending on - fullpath.
 - Examples: - from apsimNGpy.core.apsim import ApsimModel from apsimNGpy.core.core import Models - load default - maizemodule:- model = ApsimModel('Maize') - Find the path to all the manager scripts in the simulation: - model.inspect_model(Models.Manager, fullpath=True) [.Simulations.Simulation.Field.Sow using a variable rule', '.Simulations.Simulation.Field.Fertilise at sowing', '.Simulations.Simulation.Field.Harvest'] - Inspect the full path of the Clock Model: - model.inspect_model(Models.Clock) # gets the path to the Clock models ['.Simulations.Simulation.Clock'] - Inspect the full path to the crop plants in the simulation: - model.inspect_model(Models.Core.IPlant) # gets the path to the crop model ['.Simulations.Simulation.Field.Maize'] - Or use the full string path as follows: - model.inspect_model(Models.Core.IPlant, fullpath=False) # gets you the name of the crop Models ['Maize'] - Get the full path to the fertilizer model: - model.inspect_model(Models.Fertiliser, fullpath=True) ['.Simulations.Simulation.Field.Fertiliser'] - The models from APSIM Models namespace are abstracted to use strings. All you need is to specify the name or the full path to the model enclosed in a stirng as follows: - model.inspect_model('Clock') # get the path to the clock model ['.Simulations.Simulation.Clock'] - Alternatively, you can do the following: - model.inspect_model('Models.Clock') ['.Simulations.Simulation.Clock'] - Repeat inspection of the plant model while using a - string:- model.inspect_model('IPlant') ['.Simulations.Simulation.Field.Maize'] - Inspect using the full model namespace path: - model.inspect_model('Models.Core.IPlant') - What about the weather model?: - model.inspect_model('Weather') # inspects the weather module ['.Simulations.Simulation.Weather'] - Alternative: - # or inspect using full model namespace path model.inspect_model('Models.Climate.Weather') ['.Simulations.Simulation.Weather'] - Try finding the path to the cultivar model: - model.inspect_model('Cultivar', fullpath=False) # list all available cultivar names ['Hycorn_53', 'Pioneer_33M54', 'Pioneer_38H20','Pioneer_34K77', 'Pioneer_39V43','Atrium', 'Laila', 'GH_5019WX'] - # we can get only the names of the cultivar models using the full string path: - model.inspect_model('Models.PMF.Cultivar', fullpath = False) ['Hycorn_53','Pioneer_33M54', 'Pioneer_38H20','Pioneer_34K77', 'Pioneer_39V43','Atrium', 'Laila', 'GH_5019WX'] - Tip - Models can be inspected either by importing the Models namespace or by using string paths. The most reliable
- approach is to provide the full model path—either as a string or as the - Modelsobject.
- However, remembering full paths can be tedious, so allowing partial model names or references can significantly
- save time during development and exploration. 
 - Note - You do not need to import - Modelsif you pass a string; both short and fully qualified names are supported.
- “Full path” is the APSIM tree path relative to the Simulations node (be mindful of the difference between Simulations (root) and an individual Simulation). 
 - See also - Related APIs: - inspect_file(),- inspect_model_parameters(),- inspect_model_parameters_by_path()- property configs(inherited)
 - records activities or modifications to the model including changes to the file - replace_soils_values_by_path(self, node_path: 'str', indices: 'list' = None, **kwargs) (inherited)
 - set the new values of the specified soil object by path. only layers parameters are supported. - Unfortunately, it handles one soil child at a time e.g., - Physicalat a go- Parameters:- node_path: (str, required):
- complete path to the soil child of the Simulations e.g.,Simulations.Simulation.Field.Soil.Organic. Use`copy path to node function in the GUI to get the real path of the soil node. 
- indices: (list, optional)
- defaults to none but could be the position of the replacement values for arrays 
- **kwargs: (key word arguments)
- This carries the parameter and the values e.g., BD = 1.23 or BD = [1.23, 1.75] if the child is - Physical, or- Carbonif the child is- Organic- raises: `ValueError if none of the key word arguments, representing the paramters are specified - returns:
- Instance of the model object 
 
 - Example: - from apsimNGpy.core.base_data import load_default_simulations model = load_default_simulations(crop ='Maize', simulations_object=False) # initiate model. model = CoreModel(model) # ``replace`` with your intended file path model.replace_soils_values_by_path(node_path='.Simulations.Simulation.Field.Soil.Organic', indices=[0], Carbon =1.3) sv= model.get_soil_values_by_path('.Simulations.Simulation.Field.Soil.Organic', 'Carbon') output # {'Carbon': [1.3, 0.96, 0.6, 0.3, 0.18, 0.12, 0.12]} 
 - replace_soil_property_values(self, *, parameter: 'str', param_values: 'list', soil_child: 'str', simulations: 'list' = <UserOptionMissing>, indices: 'list' = None, crop=None, **kwargs) (inherited)
 - Replaces values in any soil property array. The soil property array. - parameter: str: parameter name e.g., NO3, ‘BD’- param_values: list or tuple: values of the specified soil property name to replace- soil_child: str: sub child of the soil component e.g., organic, physical etc.- simulations: list: list of simulations to where the child is found if
- not found, all current simulations will receive the new values, thus defaults to None 
 - indices: list. Positions in the array which will be replaced. Please note that unlike C#, python satrt counting from 0- crop(str, optional): string for soil water replacement. Default is None- clean_up(self, db=True, verbose=False, coerce=True, csv=True) (inherited)
 - Clears the file cloned the datastore and associated csv files are not deleted if db is set to False defaults to True. - Returns:
- >>None: This method does not return a value. 
 - Caution - Please proceed with caution, we assume that if you want to clear the model objects, then you don’t need them, but by making copy compulsory, then, we are clearing the edited files - create_experiment(self, permutation: 'bool' = True, base_name: 'str' = None, **kwargs) (inherited)
- @deprecated and will be removed in future versions for this class. 
 - Initialize an - ExperimentManagerinstance, adding the necessary models and factors.- Args: - kwargs: Additional parameters for CoreModel.- permutation(bool). If True, the experiment uses a permutation node to run unique combinations of the specified factors for the simulation. For example, if planting population and nitrogen fertilizers are provided, each combination of planting population level and fertilizer amount is run as an individual treatment.- base_name(str, optional): The name of the base simulation to be moved into the experiment setup. if not
- provided, it is expected to be Simulation as the default. 
 - Warning - base_nameis optional but the experiment may not be created if there are more than one base simulations. Therefore, an error is likely.- refresh_model(self) (inherited)
 - for methods that will alter the simulation objects and need refreshing the second time we call @return: self for method chaining - add_factor(self, specification: 'str', factor_name: 'str' = None, **kwargs) (inherited)
 - Adds a factor to the created experiment. Thus, this method only works on factorial experiments - It could raise a value error if the experiment is not yet created. - Under some circumstances, experiment will be created automatically as a permutation experiment. - Parameters:- specification``: (str), required*
- A specification can be:
- multiple values or categories e.g., “[Sow using a variable rule].Script.Population =4, 66, 9, 10” 
 
- Range of values e.g, “[Fertilise at sowing].Script.Amount = 0 to 200 step 20”, 
 
 
 
- factor_name: (str), required
- expected to be the user-desired name of the factor being specified e.g., population 
 - This method is overwritten in - ExperimentManagerclass.- @deprecated and will be removed in future versions for this class. - Example: - from apsimNGpy.core import base_data apsim = base_data.load_default_simulations(crop='Maize') apsim.create_experiment(permutation=False) apsim.add_factor(specification="[Fertilise at sowing].Script.Amount = 0 to 200 step 20", factor_name='Nitrogen') apsim.add_factor(specification="[Sow using a variable rule].Script.Population =4 to 8 step 2", factor_name='Population') apsim.run() # doctest: +SKIP - add_fac(self, model_type, parameter, model_name, values, factor_name=None) (inherited)
 - Add a factor to the initiated experiment. This should replace add_factor. which has less abstractionn @param model_type: model_class from APSIM Models namespace @param parameter: name of the parameter to fill e.g CNR @param model_name: name of the model @param values: values of the parameter, could be an iterable for case of categorical variables or a string e.g, ‘0 to 100 step 10 same as [0, 10, 20, 30, …]. @param factor_name: name to identify the factor in question @return: - set_continuous_factor(self, factor_path, lower_bound, upper_bound, interval, factor_name=None) (inherited)
 - Wraps around - add_factorto add a continuous factor, just for clarity- Args:
- factor_path: (str): The path of the factor definition relative to its child node,
- e.g., - "[Fertilise at sowing].Script.Amount".
 - factor_name: (str): The name of the factor.- lower_bound: (int or float): The lower bound of the factor.- upper_bound: (int or float): The upper bound of the factor.- interval: (int or float): The distance between the factor levels.
- Returns:
- ApsimModelor- CoreModel: An instance of- apsimNGpy.core.core.apsim.ApsimModelor- CoreModel.
 - Example: - from apsimNGpy.core import base_data apsim = base_data.load_default_simulations(crop='Maize') apsim.create_experiment(permutation=False) apsim.set_continuous_factor(factor_path = "[Fertilise at sowing].Script.Amount", lower_bound=100, upper_bound=300, interval=10) - set_categorical_factor(self, factor_path: 'str', categories: 'Union[list, tuple]', factor_name: 'str' = None) (inherited)
 - wraps around - add_factor()to add a continuous factor, just for clarity.- factor_path: (str, required): path of the factor definition relative to its child node “[Fertilise at sowing].Script.Amount”- factor_name: (str) name of the factor.- categories: (tuple, list, required): multiple values of a factor- returns:
- ApsimModelor- CoreModel: An instance of- apsimNGpy.core.core.apsim.ApsimModelor- CoreModel.
 - Example: - from apsimNGpy.core import base_data apsim = base_data.load_default_simulations(crop='Maize') apsim.create_experiment(permutation=False) apsim.set_continuous_factor(factor_path = "[Fertilise at sowing].Script.Amount", lower_bound=100, upper_bound=300, interval=10) - add_crop_replacements(self, _crop: 'str') (inherited)
 - Adds a replacement folder as a child of the simulations. - Useful when you intend to edit cultivar parameters. - Args:
- _crop(str): Name of the crop to be added to the replacement folder.
- Returns:
- ApsimModel: An instance of - apsimNGpy.core.core.apsim.ApsimModelor- CoreModel.
 
- Raises:
- ValueError: If the specified crop is not found. 
 
 - get_model_paths(self, cultivar=False)
 - Select out a few model types to use for building the APSIM file inspections - inspect_file(self, *, cultivar=False, console=True, **kwargs) (inherited)
 - Inspects the file by traversing the entire simulation tree, using - inspect_model()under the hood- This method is important in inspecting the - whole fileand also getting the- scripts paths.- Parameters- cultivar: (bool)
- To include cultivar paths. 
- console: (bool)
- Prints to the console if True 
 - Examples- from apsimNGpy.core.apsim import ApsimModel model = ApsimModel('Maize') model.inspect_file(cultivar=False) - # output - ── Simulations: .Simulations ├── DataStore: .Simulations.DataStore └── Simulation: .Simulations.Simulation ├── Clock: .Simulations.Simulation.Clock ├── Field: .Simulations.Simulation.Field │ ├── Fertilise at sowing: .Simulations.Simulation.Field.Fertilise at sowing │ ├── Fertiliser: .Simulations.Simulation.Field.Fertiliser │ ├── Harvest: .Simulations.Simulation.Field.Harvest │ ├── Maize: .Simulations.Simulation.Field.Maize │ ├── Report: .Simulations.Simulation.Field.Report │ ├── Soil: .Simulations.Simulation.Field.Soil │ │ ├── Chemical: .Simulations.Simulation.Field.Soil.Chemical │ │ ├── NH4: .Simulations.Simulation.Field.Soil.NH4 │ │ ├── NO3: .Simulations.Simulation.Field.Soil.NO3 │ │ ├── Organic: .Simulations.Simulation.Field.Soil.Organic │ │ ├── Physical: .Simulations.Simulation.Field.Soil.Physical │ │ │ └── MaizeSoil: .Simulations.Simulation.Field.Soil.Physical.MaizeSoil │ │ ├── Urea: .Simulations.Simulation.Field.Soil.Urea │ │ └── Water: .Simulations.Simulation.Field.Soil.Water │ ├── Sow using a variable rule: .Simulations.Simulation.Field.Sow using a variable rule │ └── SurfaceOrganicMatter: .Simulations.Simulation.Field.SurfaceOrganicMatter ├── Graph: .Simulations.Simulation.Graph │ └── Series: .Simulations.Simulation.Graph.Series ├── MicroClimate: .Simulations.Simulation.MicroClimate ├── SoilArbitrator: .Simulations.Simulation.SoilArbitrator ├── Summary: .Simulations.Simulation.Summary └── Weather: .Simulations.Simulation.Weather- Turn cultivar paths on as follows: - model.inspect_file(cultivar=True) - # output - └── Simulations: .Simulations ├── DataStore: .Simulations.DataStore └── Simulation: .Simulations.Simulation ├── Clock: .Simulations.Simulation.Clock ├── Field: .Simulations.Simulation.Field │ ├── Fertilise at sowing: .Simulations.Simulation.Field.Fertilise at sowing │ ├── Fertiliser: .Simulations.Simulation.Field.Fertiliser │ ├── Harvest: .Simulations.Simulation.Field.Harvest │ ├── Maize: .Simulations.Simulation.Field.Maize │ │ └── CultivarFolder: .Simulations.Simulation.Field.Maize.CultivarFolder │ │ ├── Atrium: .Simulations.Simulation.Field.Maize.CultivarFolder.Atrium │ │ ├── CG4141: .Simulations.Simulation.Field.Maize.CultivarFolder.CG4141 │ │ ├── Dekalb_XL82: .Simulations.Simulation.Field.Maize.CultivarFolder.Dekalb_XL82 │ │ ├── GH_5009: .Simulations.Simulation.Field.Maize.CultivarFolder.GH_5009 │ │ ├── GH_5019WX: .Simulations.Simulation.Field.Maize.CultivarFolder.GH_5019WX │ │ ├── Generic: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic │ │ │ ├── A_100: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_100 │ │ │ ├── A_103: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_103 │ │ │ ├── A_105: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_105 │ │ │ ├── A_108: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_108 │ │ │ ├── A_110: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_110 │ │ │ ├── A_112: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_112 │ │ │ ├── A_115: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_115 │ │ │ ├── A_120: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_120 │ │ │ ├── A_130: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_130 │ │ │ ├── A_80: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_80 │ │ │ ├── A_90: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_90 │ │ │ ├── A_95: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_95 │ │ │ ├── B_100: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_100 │ │ │ ├── B_103: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_103 │ │ │ ├── B_105: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_105 │ │ │ ├── B_108: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_108 │ │ │ ├── B_110: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_110 │ │ │ ├── B_112: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_112 │ │ │ ├── B_115: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_115 │ │ │ ├── B_120: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_120 │ │ │ ├── B_130: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_130 │ │ │ ├── B_80: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_80 │ │ │ ├── B_90: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_90 │ │ │ ├── B_95: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_95 │ │ │ ├── HY_110: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.HY_110 │ │ │ ├── LY_110: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.LY_110 │ │ │ └── P1197: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.P1197 │ │ ├── Hycorn_40: .Simulations.Simulation.Field.Maize.CultivarFolder.Hycorn_40 │ │ ├── Hycorn_53: .Simulations.Simulation.Field.Maize.CultivarFolder.Hycorn_53 │ │ ├── Katumani: .Simulations.Simulation.Field.Maize.CultivarFolder.Katumani │ │ ├── Laila: .Simulations.Simulation.Field.Maize.CultivarFolder.Laila │ │ ├── Makueni: .Simulations.Simulation.Field.Maize.CultivarFolder.Makueni │ │ ├── Melkassa: .Simulations.Simulation.Field.Maize.CultivarFolder.Melkassa │ │ ├── NSCM_41: .Simulations.Simulation.Field.Maize.CultivarFolder.NSCM_41 │ │ ├── Pioneer_3153: .Simulations.Simulation.Field.Maize.CultivarFolder.Pioneer_3153 │ │ ├── Pioneer_33M54: .Simulations.Simulation.Field.Maize.CultivarFolder.Pioneer_33M54 │ │ ├── Pioneer_34K77: .Simulations.Simulation.Field.Maize.CultivarFolder.Pioneer_34K77 │ │ ├── Pioneer_38H20: .Simulations.Simulation.Field.Maize.CultivarFolder.Pioneer_38H20 │ │ ├── Pioneer_39G12: .Simulations.Simulation.Field.Maize.CultivarFolder.Pioneer_39G12 │ │ ├── Pioneer_39V43: .Simulations.Simulation.Field.Maize.CultivarFolder.Pioneer_39V43 │ │ ├── malawi_local: .Simulations.Simulation.Field.Maize.CultivarFolder.malawi_local │ │ ├── mh12: .Simulations.Simulation.Field.Maize.CultivarFolder.mh12 │ │ ├── mh16: .Simulations.Simulation.Field.Maize.CultivarFolder.mh16 │ │ ├── mh17: .Simulations.Simulation.Field.Maize.CultivarFolder.mh17 │ │ ├── mh18: .Simulations.Simulation.Field.Maize.CultivarFolder.mh18 │ │ ├── mh19: .Simulations.Simulation.Field.Maize.CultivarFolder.mh19 │ │ ├── r201: .Simulations.Simulation.Field.Maize.CultivarFolder.r201 │ │ ├── r215: .Simulations.Simulation.Field.Maize.CultivarFolder.r215 │ │ ├── sc401: .Simulations.Simulation.Field.Maize.CultivarFolder.sc401 │ │ ├── sc501: .Simulations.Simulation.Field.Maize.CultivarFolder.sc501 │ │ ├── sc601: .Simulations.Simulation.Field.Maize.CultivarFolder.sc601 │ │ ├── sc623: .Simulations.Simulation.Field.Maize.CultivarFolder.sc623 │ │ ├── sc625: .Simulations.Simulation.Field.Maize.CultivarFolder.sc625 │ │ └── sr52: .Simulations.Simulation.Field.Maize.CultivarFolder.sr52 │ ├── Report: .Simulations.Simulation.Field.Report │ ├── Soil: .Simulations.Simulation.Field.Soil │ │ ├── Chemical: .Simulations.Simulation.Field.Soil.Chemical │ │ ├── NH4: .Simulations.Simulation.Field.Soil.NH4 │ │ ├── NO3: .Simulations.Simulation.Field.Soil.NO3 │ │ ├── Organic: .Simulations.Simulation.Field.Soil.Organic │ │ ├── Physical: .Simulations.Simulation.Field.Soil.Physical │ │ │ └── MaizeSoil: .Simulations.Simulation.Field.Soil.Physical.MaizeSoil │ │ ├── Urea: .Simulations.Simulation.Field.Soil.Urea │ │ └── Water: .Simulations.Simulation.Field.Soil.Water │ ├── Sow using a variable rule: .Simulations.Simulation.Field.Sow using a variable rule │ └── SurfaceOrganicMatter: .Simulations.Simulation.Field.SurfaceOrganicMatter ├── Graph: .Simulations.Simulation.Graph │ └── Series: .Simulations.Simulation.Graph.Series ├── MicroClimate: .Simulations.Simulation.MicroClimate ├── SoilArbitrator: .Simulations.Simulation.SoilArbitrator ├── Summary: .Simulations.Simulation.Summary └── Weather: .Simulations.Simulation.Weather- See also - Related APIs: - inspect_model(),- inspect_model_parameters()
 - summarize_numeric(self, data_table: 'Union[str, tuple, list]' = None, columns: 'list' = None, percentiles=(0.25, 0.5, 0.75), round=2)
 - Summarize numeric columns in a simulated pandas DataFrame. Useful when you want to quickly look at the simulated data - Parameters: - data_table (list, tuple, str): The names of the data table attached to the simulations. defaults to all data tables. 
- specific (list) columns to summarize. 
- percentiles (tuple): Optional percentiles to include in the summary. 
- round (int): number of decimal places for rounding off. 
 - Returns: - pd.DataFrame: A summary DataFrame with statistics for each numeric column. - add_db_table(self, variable_spec: 'list' = None, set_event_names: 'list' = None, rename: 'str' = None, simulation_name: 'Union[str, list, tuple]' = <UserOptionMissing>) (inherited)
- Adds a new database table, which - APSIMcalls- Report(Models.Report) to the- Simulationunder a Simulation Zone.- This is different from - add_report_variablein that it creates a new, named report table that collects data based on a given list of _variables and events. actu- Parameters:- variable_spec: (list or str)
- A list of APSIM variable paths to include in the report table. If a string is passed, it will be converted to a list. 
- set_event_names: (list or str, optional):
- A list of APSIM events that trigger the recording of _variables.
- Defaults to [‘[Clock].EndOfYear’] if not provided. other examples include ‘[Clock].StartOfYear’, ‘[Clock].EndOfsimulation’, ‘[crop_name].Harvesting’ etc. 
 
 - rename: (str): The name of the report table to be added. Defaults to ‘my_table’. - simulation_name: (str,tuple, or list, Optional)
- if specified, the name of the simulation will be searched and will become the parent candidate for the report table. If it is none, all Simulations in the file will be updated with the new db_table 
 - Raises:- ValueError: If no variable_spec is provided.- RuntimeError: If no Zone is found in the current simulation scope.- Examples: - from apsimNGpy.core.apsim import ApsimModel model = ApsimModel('Maize') model.add_db_table(variable_spec=['[Clock].Today', '[Soil].Nutrient.TotalC[1]/1000 as SOC1'], rename='report2') model.add_db_table(variable_spec=['[Clock].Today', '[Soil].Nutrient.TotalC[1]/1000 as SOC1', '[Maize].Grain.Total.Wt*10 as Yield'], rename='report2', set_event_names=['[Maize].Harvesting','[Clock].EndOfYear' ]) 
 - See also - Related APIs: - remove_report_variables()and- add_report_variables().- Datastore(inherited)
 - Default: - <member 'Datastore' of 'CoreModel' objects>- End(inherited)
 - Default: - <member 'End' of 'CoreModel' objects>- Models(inherited)
 - Default: - <member 'Models' of 'CoreModel' objects>- Simulations(inherited)
 - Default: - <member 'Simulations' of 'CoreModel' objects>- Start(inherited)
 - Default: - <member 'Start' of 'CoreModel' objects>- base_name(inherited)
 - Default: - <member 'base_name' of 'CoreModel' objects>- copy(inherited)
 - Default: - <member 'copy' of 'CoreModel' objects>- datastore(inherited)
 - Default: - <member 'datastore' of 'CoreModel' objects>- experiment(inherited)
 - Default: - <member 'experiment' of 'CoreModel' objects>- experiment_created(inherited)
 - Default: - <member 'experiment_created' of 'CoreModel' objects>- factor_names(inherited)
 - Default: - <member 'factor_names' of 'CoreModel' objects>- factors(inherited)
 - Default: - <member 'factors' of 'CoreModel' objects>- model(inherited)
 - Default: - <member 'model' of 'CoreModel' objects>- model_info(inherited)
 - Default: - <member 'model_info' of 'CoreModel' objects>- others(inherited)
 - Default: - <member 'others' of 'CoreModel' objects>- out(inherited)
 - Default: - <member 'out' of 'CoreModel' objects>- out_path(inherited)
 - Default: - <member 'out_path' of 'CoreModel' objects>- path(inherited)
 - Default: - <member 'path' of 'CoreModel' objects>- permutation(inherited)
 - Default: - <member 'permutation' of 'CoreModel' objects>- ran_ok(inherited)
 - Default: - <member 'ran_ok' of 'CoreModel' objects>- report_names(inherited)
 - Default: - <member 'report_names' of 'CoreModel' objects>- run_method(inherited)
 - Default: - <member 'run_method' of 'CoreModel' objects>- set_wd(inherited)
 - Default: - <member 'set_wd' of 'CoreModel' objects>- wk_info(inherited)
 - Default: - <member 'wk_info' of 'CoreModel' objects>- work_space(inherited)
 - Default: - <member 'work_space' of 'CoreModel' objects>- plot_mva(self, table: pandas.core.frame.DataFrame, time_col: Hashable, response: Hashable, *, expression: str = None, window: int = 5, min_period: int = 1, grouping: Hashable | collections.abc.Sequence[Hashable] | NoneType = None, preserve_start: bool = True, kind: str = 'line', estimator='mean', plot_raw: bool = False, raw_alpha: float = 0.35, raw_linewidth: float = 1.0, auto_datetime: bool = False, ylabel: str | None = None, return_data: bool = False, **kwargs)
 - Plot a centered moving-average (MVA) of a response using - seaborn.relplot.- Enhancements over a direct - relplotcall: - Computes and plots a smoothed series via- apsimNGpy.stats.data_insights.mva(). - Supports multi-column grouping; will auto-construct a composite hue if needed. - Optional overlay of the raw (unsmoothed) series for comparison. - Stable (mergesort) time ordering.- Parameters- tablepandas.DataFrame or str
- Data source or table name; if - None, use :pyattr:`results`.
- time_colhashable
- Time (x-axis) column. 
- responsehashable
- Response (y) column to smooth. 
- expression: str default is None
- simple mathematical expression to create new columns from existing columns 
- windowint, default=5
- MVA window size. 
- min_periodint, default=1
- Minimum periods for the rolling mean. 
- groupinghashable or sequence of hashable, optional
- One or more grouping columns. 
- preserve_startbool, default=True
- Preserve initial values when centering. 
- kind{“line”,”scatter”}, default=”line”
- Passed to - sns.relplot.
- estimatorstr or None, default=”mean”
- Passed to - sns.relplot(set to- Noneto plot raw observations).
- plot_rawbool, default=False
- Overlay the raw series on each facet. 
- raw_alphafloat, default=0.35
- Alpha for the raw overlay. 
- raw_linewidthfloat, default=1.0
- Line width for the raw overlay. 
- auto_datetimebool, default=False
- Attempt to convert - time_colto datetime.
- ylabelstr, optional
- Custom y-axis label; default is generated from window/response. 
- return_databool, default=False
- If - True, return- (FacetGrid, smoothed_df).
 - Returns- seaborn.FacetGrid
- The relplot grid, or - (grid, smoothed_df)if- return_data=True.
 - Notes- This function calls - seaborn.relplot()and accepts its keyword arguments via- **kwargs. See link below for details:- https://seaborn.pydata.org/generated/seaborn/relplot.html - boxplot(self, column, *, table=None, expression: str = None, by=None, figsize=(10, 8), grid=False, **kwargs) (inherited)
 - Plot a boxplot from simulation results using - pandas.DataFrame.boxplot.- Parameters- columnstr
- Column to plot. 
- tablestr or pandas.DataFrame, optional
- Table name or DataFrame; if omitted, use :pyattr:`results`. 
- bystr, optional
- Grouping column. 
 - figsize : tuple, default=(10, 8) grid : bool, default=False **kwargs - Forwarded to - pandas.DataFrame.boxplot().- Returns- matplotlib.axes.Axes - See also - Related APIs: - cat_plot().- distribution(self, x, *, table=None, expression: str = None, **kwargs) (inherited)
 - Plot a uni-variate distribution/histogram using - seaborn.histplot().- Parameters- xstr
- Numeric column to plot. 
- tablestr or pandas.DataFrame, optional
- Table name or DataFrame; if omitted, use :pyattr:`results`. 
- expression: str default is None
- simple mathematical expression to create new columns from existing columns 
- **kwargs
- Forwarded to - seaborn.histplot().
 - Raises- ValueError
- If - xis a string-typed column.
 - Notes- This function calls - seaborn.histplot()and accepts its keyword arguments via- **kwargs. See link below for details:- https://seaborn.pydata.org/generated/seaborn/histplot.html 
 - series_plot(self, table=None, expression: str = None, *, x: str = None, y: Union[str, list] = None, hue=None, size=None, style=None, units=None, weights=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, dashes=True, markers=None, style_order=None, estimator='mean', errorbar=('ci', 95), n_boot=1000, seed=None, orient='x', sort=True, err_style='band', err_kws=None, legend='auto', ci='deprecated', ax=None, **kwargs) (inherited)
 - Just a wrapper for seaborn.lineplot that supports multiple y columns that could be provided as a list - tablestr | [str] |None | None| pandas.DataFrame, optional. Default is None
- If the table names are provided, results are collected from the simulated data, using that table names. If None, results will be all the table names inside concatenated along the axis 0 (not recommended). 
 - expression: str default is None
- simple mathematical expression to create new columns from existing columns - If - yis a list of columns, the data are melted into long form and
 - the different series are colored by variable name. - **Kwargs
- Additional keyword args and all other arguments are for Seaborn.lineplot. See the reference below for all the kwargs. 
 - reference; https://seaborn.pydata.org/generated/seaborn.lineplot.html - Examples- >>> model.series_plot(x='Year', y='Yield', table='Report') >>> model.series_plot(x='Year', y=['SOC1', 'SOC2'], table='Report') - Examples:- >>> from apsimNGpy.core.apsim import ApsimModel >>> model = ApsimModel(model= 'Maize') # run the results >>> model.run(report_names='Report') >>>model.series_plot(x='Maize.Grain.Size', y='Yield', table='Report') >>>model.render_plot(show=True, ylabel = 'Maize yield', xlabel ='Maize grain size') - Plot two variables: - >>>model.series_plot(x=’Yield’, y=[‘Maize.Grain.N’, ‘Maize.Grain.Size’], table= ‘Report’) - Notes- This function calls - seaborn.lineplot()and accepts its keyword arguments via- **kwargs. See link below for detailed explanations:- https://seaborn.pydata.org/generated/seaborn/lineplot.html 
 - See also - Related APIs: - plot_mva().- scatter_plot(self, table=None, expression: str = None, *, x=None, y=None, hue=None, size=None, style=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, markers=True, style_order=None, legend='auto', ax=None, **kwargs) (inherited)
 - Scatter plot using - seaborn.scatterplot()with flexible aesthetic mappings.- Parameters- tablestr | [str] |None | None| pandas.DataFrame, optional. Default is None
- If the table names are provided, results are collected from the simulated data, using that table names. If None, results will be all the table names inside concatenated along the axis 0 (not recommended). 
- x, y, hue, size, style, palette, hue_order, hue_norm, sizes, size_order, size_norm, markers, style_order, legend, ax
- Passed through to - seaborn.scatterplot().
- expression: str default is None
- simple mathematical expression to create new columns from existing columns 
- ** Kwargs
- Additional keyword args for Seaborn. 
 - See the reference below for all the kwargs. reference; https://seaborn.pydata.org/generated/seaborn.scatterplot.html 
 - cat_plot(self, table=None, expression=None, *, x=None, y=None, hue=None, row=None, col=None, kind='strip', estimator='mean', errorbar=('ci', 95), n_boot=1000, seed=None, units=None, weights=None, order=None, hue_order=None, row_order=None, col_order=None, col_wrap=None, height=5, aspect=1, log_scale=None, native_scale=False, formatter=None, orient=None, color=None, palette=None, hue_norm=None, legend='auto', legend_out=True, sharex=True, sharey=True, margin_titles=False, facet_kws=None, **kwargs) (inherited)
- Categorical plot wrapper over - seaborn.catplot().
 - Parameters- table : str or pandas.DataFrame, optional - expression: str default is None
- simple mathematical expression to create new columns from existing columns 
 - x, y, hue, row, col, kind, estimator, errorbar, n_boot, seed, units, weights, order, hue_order, row_order, col_order, col_wrap, height, aspect, log_scale, native_scale, formatter, orient, color, palette, hue_norm, legend, legend_out, sharex, sharey, margin_titles, facet_kws - Passed through to - seaborn.catplot().- **kwargs
- Additional keyword args for Seaborn. 
 - Returns- seaborn.axisgrid.FacetGrid - reference https://seaborn.pydata.org/generated/seaborn.catplot.html - Related APIs: - distribution().- reg_plot(self, table=None, expression=None, **kwargs) (inherited)
 - Wrapper around seaborn.lmplot. V 0.39.10.19+ - Kwargs passed to seaborn.lmplot- xstr or None, optional
- Name of column in - datato plot on the x-axis.
- ystr or None, optional
- Name of column in - datato plot on the y-axis.
- huestr or None, optional
- Grouping variable that will produce elements with different colors. 
- colstr or None, optional
- Variable that defines columns of the facet grid. 
- rowstr or None, optional
- Variable that defines rows of the facet grid. 
- palettestr, list, dict, or None, optional
- Color palette for different - huelevels.
- col_wrapint or None, optional
- Wrap the column facets after this many columns. 
- heightfloat, default=5
- Height (in inches) of each facet. 
- aspectfloat, default=1
- Aspect ratio of each facet, so width = aspect * height. 
- markersstr or list, default=’o’
- Marker(s) used for the scatter plot points. 
- sharexbool or None, optional
- If True, share x-axis limits across facets. 
- shareybool or None, optional
- If True, share y-axis limits across facets. 
- hue_orderlist or None, optional
- Order to plot the levels of - hue.
- col_orderlist or None, optional
- Order to plot the levels of - col.
- row_orderlist or None, optional
- Order to plot the levels of - row.
- legendbool, default=True
- If True, add a legend for the - huevariable.
- legend_outbool or None, optional
- If True, place the legend outside the grid. 
- x_estimatorcallable or None, optional
- Function to compute a central tendency of - yfor each unique- x(e.g.- np.mean). Plot points at that value instead of raw data.
- x_binsint or None, optional
- Bin the - xvariable into discrete bins before plotting.
- x_ci‘ci’, ‘sd’, float, or None, default=’ci’
- Size/definition of the confidence band around the estimator in - x_estimator.
- scatterbool, default=True
- If True, draw the scatter points. 
- fit_regbool, default=True
- If True, fit and plot a regression line. 
- ciint or None, default=95
- Size of the bootstrap confidence interval for the regression estimate. 
- n_bootint, default=1000
- Number of bootstrap samples to compute - ci.
- unitsstr or None, optional
- Column in - dataidentifying sampling units. Used for clustered bootstrap.
- seedint, RandomState, or None, optional
- Random seed for reproducible bootstrapping. 
- orderint, default=1
- Polynomial order of the regression (1 = linear). 
- logisticbool, default=False
- If True, fit a logistic regression. 
- lowessbool, default=False
- If True, fit a locally weighted regression (LOWESS). 
- robustbool, default=False
- If True, use a robust regression estimator. 
- logxbool, default=False
- If True, estimate the model in log10(x) space. 
- x_partialstr, list of str, or None, optional
- Columns in - datato regress out of- xbefore plotting.
- y_partialstr, list of str, or None, optional
- Columns in - datato regress out of- ybefore plotting.
- truncatebool, default=True
- If True, limit the regression line to the data range. 
- x_jitterfloat or None, optional
- Amount of horizontal jitter to add to scatter points. 
- y_jitterfloat or None, optional
- Amount of vertical jitter to add to scatter points. 
- scatter_kwsdict or None, optional
- Additional keyword args passed to the scatter plot (e.g. alpha, s). 
- line_kwsdict or None, optional
- Additional keyword args passed to the regression line plot. 
- facet_kwsdict or None, optional
- Additional keyword args passed to seaborn.FacetGrid. 
 - See Also- seaborn.lmplotHigh-level interface for plotting linear models with faceting.
 - Tutorial: https://seaborn.pydata.org/tutorial/regression.html#regression-tutorial - relplot(self, table=None, **kwargs) (inherited)
 - Plots a relation plot 
apsimNGpy.core.config
Functions
- apsimNGpy.core.config.any_bin_path_from_env() pathlib.Path
- Finalize resolving the real APSIM bin path or raise a clear error. - APSIM bin path expected in environment variables:keys include: - APSIM_BIN_PATH / APSIM_PATH / APSIM/ Models 
- apsimNGpy.core.config.get_apsim_bin_path()
- Returns the path to the apsim bin folder from either auto-detection or from the path already supplied by the user through the apsimNGpy config.ini file in the user home directory. - This function is silent does not raise any exception but return empty string in all cases if bin_path is empty or was not found. - Example: - bin_path = get_apsim_bin_path() - See also 
- apsimNGpy.core.config.get_bin_use_history()
- shows the bins that have been used only those still available on the computer as valid paths are shown. - @return: list[paths] 
- apsimNGpy.core.config.list_drives()
- for windows-only @return: list of available drives on windows pc 
- apsimNGpy.core.config.load_crop_from_disk(crop: str, out: str | pathlib.Path, bin_path=None, cache_path=True)
- Load a default APSIM crop simulation file from disk by specifying only the crop name. This fucntion can literally load anything that resides under the /Examples directory. - Locates and copies an - .apsimxfile associated with the specified crop from the APSIM /Examples directory into a working directory. It is useful when programmatically running default simulations for different crops without manually opening them in GUI.- Parameters- crop: (str)
- The name of the crop to load (e.g., ‘Maize’, ‘Soybean’, ‘Barley’, ‘Mungbean’, ‘Pinus’, ‘Eucalyptus’). The name is case-insensitive and must-match an existing - .apsimxfile in the APSIM Examples folder.
- out: (str, optional)
- A custom output path where the - .apsimxfile should be copied. If not provided, a temporary file will be created in the working directory. this is stamped with the APSIM version being used
- bin_path: (str, optional):
- no restriction we can laod from another bin path 
 - cache_path: (str, optional): - keep the path in memory for the next request - Returns- str: The path to the copied- .apsimxfile ready for further manipulation or simulation.- Caution - The method catches the results, so if the file is removed from the disk, there may be issues> If this case is anticipated, turn off the cach_path to False. - Raises- FileNotFoundError: If the APSIM binary path cannot be resolved or the crop simulation file does not exist.- Example: - >>> load_crop_from_disk("Maize", out ='my_maize_example.apsimx') 'C:/path/to/temp_uuid_Maize.apsimx' 
- apsimNGpy.core.config.scan_drive_for_bin()
- This function uses scan_dir_for_bin to scan all drive directories. for Windows only 
- apsimNGpy.core.config.set_apsim_bin_path(path: str | pathlib.Path, raise_errors: bool = True, verbose: bool = False) bool
- Validate and write the bin path to the config file, where it is accessed by - get_apsim_bin_path.- pathUnion[str, Path]
- The provided - pathshould point to (or contain) the APSIM- bindirectory that includes the required binaries:- Windows: Models.dll AND Models.exe 
- macOS/Linux: Models.dll AND Models (unix executable) 
 - If - pathis a parent directory, the function will search recursively to locate a matching- bindirectory. The first match is used.
- raise_errorsbool, default is True
- Whether to raise an error in case of errors. for testing purposes only 
- verbose: bool
- whether to print messages to the console or not 
 - bool
- True if the configuration was updated (or already valid and set to the same resolved path), False if validation failed and - raise_errors=False.
 - ValueError
- If no valid APSIM binary directory is found and - raise_errors=True.
 - >>> from apsimNGpy.core import config >>> # Check the current path >>> current = config.get_apsim_bin_path() >>> # Set the desired path (either the bin folder or a parent) >>> config.set_apsim_bin_path('/path/to/APSIM/2025/bin', verbose=True) - See also 
apsimNGpy.core.experimentmanager
Classes
- class apsimNGpy.core.experimentmanager.ExperimentManager
- This class inherits methods and attributes from: - ApsimModelto manage APSIM Experiments with pure factors or permutations. You first need to initiate the instance of this class and then initialize the experiment itself with:- init_experiment(), which creates a new experiment from the suggested base simulation and- permutationtype- The flow of method for - ExperimentManagerclass is shown in the diagram below:- flowchart LR PlotManager["PlotManager"] CoreModel["CoreModel"] ApsimModel["ApsimModel"] ExperimentManager["ExperimentManager"] PlotManager --> CoreModel CoreModel --> ApsimModel ApsimModel --> ExperimentManager- PlotManager→ Produces visual outputs from model results (Not exposed in the API reference)
- CoreModel→ contains methods for running and manipulating models (Not exposed in the API reference)
- ApsimModel→ Extends- Coremodelcapabilities with more functionalities
- ExperimentManager→ Manages and creates a new experiment from the suggested base.
 - List of Public Attributes:
- str_model
 - List of Public Methods- __init__(self, model, out_path=None)
 - Initialize self. See help(type(self)) for accurate signature. - Initializes the factorial experiment structure inside the APSIM file. - Parameters- permutation: (bool)
- If True, enables permutation mode; otherwise, uses standard factor crossing. 
- base_simulation: (str)
- The base simulation name to use for the experiment. If None, the base simulation is selected from the available simulations 
 - Side Effects:- Replaces any existing ExperimentManager node with a new configuration. 
- Clones the base simulation and adds it under the experiment. 
- Never mind, though all this edits are made on a cloned model. 
- In the presence of replacements, they are moved or retained directly at the simulations node 
 - Examples: - from apsimNGpy.core.experimentmanager import ExperimentManager # initialize the model experiment = ExperimentManager('Maize', out_path = 'my_experiment.apsimx') # initialize experiment without permutation crossing of the factors experiment.init_experiment(permutation=False) # initialize experiment with permutation =True experiment.init_experiment(permutation=True) # initialize experiment with a preferred base simulation name experiment.init_experiment(permutation=False, base_simulation='Simulation') # view the simulation tree experiment.inspect_file() - The method - inspect_file()is inherited from the- ApsimModelclass , but it is still useful here, for example, you can see that we added an experiment Model under Simulations as shown below.- └── Simulations: .Simulations ├── DataStore: .Simulations.DataStore └── Experiment: .Simulations.Experiment ├── Factors: .Simulations.Experiment.Factors └── Simulation: .Simulations.Experiment.Simulation ├── Clock: .Simulations.Experiment.Simulation.Clock ├── Field: .Simulations.Experiment.Simulation.Field │ ├── Fertilise at sowing: .Simulations.Experiment.Simulation.Field.Fertilise at sowing │ ├── Fertiliser: .Simulations.Experiment.Simulation.Field.Fertiliser │ ├── Harvest: .Simulations.Experiment.Simulation.Field.Harvest │ ├── Maize: .Simulations.Experiment.Simulation.Field.Maize │ ├── Report: .Simulations.Experiment.Simulation.Field.Report │ ├── Soil: .Simulations.Experiment.Simulation.Field.Soil │ │ ├── Chemical: .Simulations.Experiment.Simulation.Field.Soil.Chemical │ │ ├── NH4: .Simulations.Experiment.Simulation.Field.Soil.NH4 │ │ ├── NO3: .Simulations.Experiment.Simulation.Field.Soil.NO3 │ │ ├── Organic: .Simulations.Experiment.Simulation.Field.Soil.Organic │ │ ├── Physical: .Simulations.Experiment.Simulation.Field.Soil.Physical │ │ │ └── MaizeSoil: .Simulations.Experiment.Simulation.Field.Soil.Physical.MaizeSoil │ │ ├── Urea: .Simulations.Experiment.Simulation.Field.Soil.Urea │ │ └── Water: .Simulations.Experiment.Simulation.Field.Soil.Water │ ├── Sow using a variable rule: .Simulations.Experiment.Simulation.Field.Sow using a variable rule │ └── SurfaceOrganicMatter: .Simulations.Experiment.Simulation.Field.SurfaceOrganicMatter ├── Graph: .Simulations.Experiment.Simulation.Graph │ └── Series: .Simulations.Experiment.Simulation.Graph.Series ├── MicroClimate: .Simulations.Experiment.Simulation.MicroClimate ├── SoilArbitrator: .Simulations.Experiment.Simulation.SoilArbitrator ├── Summary: .Simulations.Experiment.Simulation.Summary └── Weather: .Simulations.Experiment.Simulation.Weather- See also - Add a new factor to the experiment from an APSIM-style script specification. - Parameters- specificationstr
- An APSIM script-like expression that defines the parameter variation, e.g. - "[Organic].Carbon[1] = 1.2, 1.8"or- "[Sow using a variable rule].Script.Population = 6, 10".
- factor_namestr, optional
- A unique name for the factor. If not provided, a name is auto-generated from the target variable in - specification(typically the last token).
- **kwargs
- Optional metadata or configuration (currently unused). 
 - Raises- ValueError
- If a script-based specification references a non-existent or unlinked manager script. 
 - Side Effects- Inserts the factor into the appropriate parent node ( - Permutationor- Factors).
- If a factor at the same index already exists, it is safely deleted before inserting the new one. 
 - Notes- All methods from - ApsimModelremain available on this class. You can still inspect, run, and visualize results.- Examples- Initialize an experiment: - from apsimNGpy.core.experimentmanager import ExperimentManager # initialize the model experiment = ExperimentManager('Maize', out_path='my_experiment.apsimx') # initialize experiment with permutation crossing of factors experiment.init_experiment(permutation=True) - Inspect model components: - experiment.inspect_model('Models.Manager') - ['.Simulations.Experiment.Simulation.Field.Sow using a variable rule', '.Simulations.Experiment.Simulation.Field.Fertilise at sowing', '.Simulations.Experiment.Simulation.Field.Harvest'] - experiment.inspect_model('Models.Factorial.Experiment') - ['.Simulations.Experiment'] - 1) Add a factor associated with a manager script- experiment.add_factor( specification='[Sow using a variable rule].Script.Population = 6, 10', factor_name='Population' ) - 2) Add a factor associated with a soil node (e.g., initial soil organic carbon)- experiment.add_factor( specification='[Organic].Carbon[1] = 1.2, 1.8', factor_name='initial_carbon' ) - Check how many factors have been added: - experiment.n_factors # 2 - Inspect factors: - experiment.inspect_model('Models.Factorial.Factor') - ['.Simulations.Experiment.Factors.Permutation.Nitrogen', '.Simulations.Experiment.Factors.Permutation.initial_carbon'] - Get factor names only: - experiment.inspect_model('Models.Factorial.Factor', fullpath=False) - ['Nitrogen', 'initial_carbon'] - Run the model and summarize results: - experiment.run() df = experiment.results df.groupby(['Population', 'initial_carbon'])['Yield'].mean() - Population initial_carbon 10 1.2 6287.538183 1.8 6225.861601 6 1.2 5636.529504 1.8 5608.971306 Name: Yield, dtype: float64- Save the experiment (same as - ApsimModel):- experiment.save() - See also - save().- Common Pitfalls- 1) Adding the same specification with only a different- factor_name- experiment.add_factor( specification='[Organic].Carbon[1] = 1.2, 1.8', factor_name='initial_carbon' ) experiment.add_factor( specification='[Organic].Carbon[1] = 1.2, 1.8', factor_name='carbon' ) - By default, specifications are evaluated on their arguments, so the example above creates two identical factors—usually not desired. - experiment.save() experiment.inspect_model('Models.Factorial.Factor') - ['.Simulations.Experiment.Factors.Permutation.initial_carbon', '.Simulations.Experiment.Factors.Permutation.carbon'] - 2) Invalid specification path to target parameters- Common causes include referencing models not present in the script, adding quotes around numeric levels, or inserting stray spaces in paths. - Invalid (extra quotes): - experiment.add_factor( specification='[Organic].Carbon[1] = "1.2, 1.8"', factor_name='initial_carbon' ) - Correct: - experiment.add_factor( specification='[Organic].Carbon[1] = 1.2, 1.8', factor_name='initial_carbon' ) - Invalid (extra space in path): - experiment.add_factor( specification='[Organic]. Carbon[1] = 1.2, 1.8', factor_name='initial_carbon' ) - Correct: - experiment.add_factor( specification='[Organic].Carbon[1] = 1.2, 1.8', factor_name='initial_carbon' ) - property n_factors
 - Returns:
- int: The total number of active factor specifications currently added to the experiment. 
 - finalize(self)
 - ” Finalizes the experiment setup by re-creating the internal APSIM factor nodes from specs. - This method is designed as a guard against unintended modifications and ensures that all factor definitions are fully resolved and written before saving. - Side Effects:
- Clears existing children from the parent factor node. Re-creates and attaches each factor as a new node. Triggers model saving. 
 - get_soil_from_web(self, simulation_name: Union[str, tuple, NoneType] = None, *, lonlat: Optional[System.Tuple[Double, Double]] = None, soil_series: Optional[str] = None, thickness_sequence: Optional[Sequence[float]] = 'auto', thickness_value: int = None, max_depth: Optional[int] = 2400, n_layers: int = 10, thinnest_layer: int = 100, thickness_growth_rate: float = 1.5, edit_sections: Optional[Sequence[str]] = None, attach_missing_sections: bool = True, additional_plants: tuple = None, adjust_dul: bool = True) (inherited)
 - Download SSURGO-derived soil for a given location and populate the APSIM NG soil sections in the current model. - This method updates the target Simulation(s) in-place by attaching a Soil node (if missing) and writing section properties from the downloaded profile. - Parameters- simulationstr | sequence[str] | None, default None
- Target simulation name(s). If - None, all simulations are updated.
- lonlattuple[float, float] | None
- Location for SSURGO download, as - (lon, lat)in decimal degrees (e.g.,- (-93.045, 42.012)).
- soil_seriesstr | None, optional
- Optional component/series filter. If - None, the dominant series by area is used. If a non-existent series is supplied, an error is raised.
- thickness_sequencesequence[float] | str | None, default “auto”
- Explicit layer thicknesses (mm). If - "auto", thicknesses are generated from the layer controls (e.g., number of layers, growth rate, thinnest layer, and- max_depth). If- None, you must provide- thickness_valueand- max_depthto construct a uniform sequence.
- thickness_valueint | None, optional
- Uniform thickness (mm) for all layers. Ignored if - thickness_sequenceis provided; used only when- thickness_sequenceis- None.
- max_depthint, default 2400
- Maximum soil depth (mm) to cover with the thickness sequence. 
- edit_sectionssequence[str], optional
- Sections to edit. Default: - ("physical", "organic", "chemical", "water", "water_balance", "solutes", "soil_crop", "meta_info"). Note: if sections are edited with differing layer counts, APSIM may error at run time.
- attach_missing_sectionsbool, default True
- If - True, create and attach missing section nodes before editing.
- additional_plantssequence[str] | None, optional
- Plant names for which to create/populate - SoilCropentries (e.g., to set KL/XF).
- adjust_dulbool, optional
- If - True, adjust layer values where- SATexceeds- DULto prevent APSIM runtime errors.
 - Returns- self
- The same instance, to allow method chaining. 
 - Raises- ValueError
- thickness_sequenceprovided with any non-positive value(s).
- thickness_sequenceis- Noneand- thickness_valueis- None.
- Units mismatch or inconsistency between - thickness_valueand- max_depth.
 
 - Notes- Assumes soil sections live under a Soil node; when - attach_missing_sections=Truea Soil node is created if missing.
- Uses the optimized SoilManager routines (vectorized assignments / .NET double[] marshaling). 
- Side effects (in place on the APSIM model):
- Creates/attaches Soil when needed. 
- Creates/updates child sections ( - Physical,- Organic,- Chemical,- Water,- WaterBalance,- SoilCrop) as listed in- edit_sections.
- Overwrites section properties (e.g., layer arrays such as - Depth,- BD,- LL15,- DUL,- SAT; solutes; crop KL/XF) with downloaded values.
- Add SoilCrop children for any names in - additional_plants.
- Performs network I/O to retrieve SSURGO tables when - lonlatis provided.
- Emits log messages (warnings/info) when attaching nodes, resolving thickness controls, or skipping missing columns. 
- Caches the computed soil profile in the helper during execution; the in-memory APSIM tree remains modified after return. 
- Does not write files; call - save()on the model if you want to persist changes.
- The existing soil-profile structure is completed override by the newly generated soil profile. So, variables like soil thickness, number of soil layers, etc. might be different from the old one. 
 
 
 - adjust_dul(self, simulations: Union[tuple, list] = None) (inherited)
 - This method checks whether the soil - SATis above or below- DULand decreases- DULvalues accordingly
- Need to call this method everytime - SATis changed, or- DULis changed accordingly.
 - simulations: str, name of the simulation where we want to adjust DUL and SAT according.- returns:- model the object for method chaining - replace_downloaded_soils(self, soil_tables: Union[dict, list], simulation_names: Union[tuple, list], **kwargs) (inherited)
 - @deprecated and will be removed in the future versions
- Updates soil parameters and configurations for downloaded soil data in simulation models. - This method adjusts soil physical and organic parameters based on provided soil tables and applies these adjustments to specified simulation models. - Parameters: - soil_tables(list): A list containing soil data tables. Expected to contain: see the naming convention in the for APSIM - [0]: DataFrame with physical soil parameters. - [1]: DataFrame with organic soil parameters. - [2]: DataFrame with crop-specific soil parameters. - simulation_names (list of str): Names or identifiers for the simulations to be updated.s- Returns: - self: Returns an instance of the class for - chainingmethods.- This method directly modifies the simulation instances found by - find_simulationsmethod calls, updating physical and organic soil properties, as well as crop-specific parameters like lower limit (- LL), drain upper limit (- DUL), saturation (- SAT), bulk density (- BD), hydraulic conductivity at saturation (- KS), and more based on the provided soil tables.
 - ->> key-word argument - set_sw_con: Boolean, set the drainage coefficient for each layer- adJust_kl:: Bollean, adjust, kl based on productivity index- CultvarName: cultivar name which is in the sowing module for adjusting the rue- tillage: specify whether you will be carried to adjust some physical parameters- spin_up(self, report_name: str = 'Report', start=None, end=None, spin_var='Carbon', simulations=None) (inherited)
 - Perform a spin-up operation on the aPSim model. - This method is used to simulate a spin-up operation in an aPSim model. During a spin-up, various soil properties or _variables may be adjusted based on the simulation results. - Parameters:- report_name: str, optional (default: ‘Report’)
- The name of the aPSim report to be used for simulation results. 
- start: str, optional
- The start date for the simulation (e.g., ‘01-01-2023’). If provided, it will change the simulation start date. 
- end: str, optional
- The end date for the simulation (e.g., ‘3-12-2023’). If provided, it will change the simulation end date. 
- spin_var: str, optional (default: ‘Carbon’). the difference between the start and end date will determine the spin-up period
- The variable representing the child of spin-up operation. Supported values are ‘Carbon’ or ‘DUL’. 
 - Returns:- selfApsimModel
- The modified - ApsimModelobject after the spin-up operation. you could call- save_editedfile and save it to your specified location, but you can also proceed with the simulation
 - read_apsimx_data(self, table=None) (inherited)
 - Read APSIM NG datastore for the current model. Raises FileNotFoundError if the model was initialized from default models because those need to be executed first to generate a database. - The rationale for this method is that you can just access the results from the previous session without running it if the database is in the same location as the apsimx file. - Since apsimNGpy clones the apsimx file, the original file is kept with attribute name - _model, that is what is being used to access the dataset- table: (str) name of the database table to read if none of all tables are returned - Returns: pandas.DataFrame - KeyError: if table is not found in the database - property simulations(inherited)
 - Retrieve simulation nodes in the APSIMx - Model.Core.Simulationsobject.- We search all-Models.Core.Simulation in the scope of Model.Core.Simulations. Please note the difference Simulations is the whole json object Simulation is the child with the field zones, crops, soils and managers. - Any structure of apsimx file can be handled. - Note - The simulations are c# referenced objects, and their manipulation maybe for advanced users only. - property simulation_names(inherited)
 - @deprecated will be removed in future releases. Please use inspect_model function instead. - retrieves the name of the simulations in the APSIMx file @return: list of simulation names - restart_model(self, model_info=None) (inherited)
 - Parameters:- model_info: collections.NamedTuple.
- A named tuple object returned by - load_apsim_modelfrom the- model_loadermodule.
 - Notes: - This parameter is crucial whenever we need to - reinitializethe model, especially after updating management practices or editing the file. - In some cases, this method is executed automatically. - If- model_infois not specified, the simulation will be reinitialized from- self.- This function is called by - save_edited_file,- save' and ``update_mgt`.- return:
- self 
 - save(self, file_name: 'Union[str, Path, None]' = None, reload=True) (inherited)
 - Saves the current APSIM NG model ( - Simulations) to disk and refresh runtime state.- This method writes the model to a file, using a version-aware strategy: - After writing, the model is recompiled via - recompile(self)()and the in-memory instance is refreshed using- restart_model(), ensuring the object graph reflects the just-saved state. This is now only impozed if the user specified- relaod = True.- Parameters- file_namestr or pathlib.Path, optional
- Output path for the saved model file. If omitted ( - None), the method uses the instance’s existing- path. The resolved path is also written back to instance- pathattribute for consistency if reload is True.
- reload: bool Optional default is True
- resets the reference path to the one provided after serializing to disk. This implies that the instance - pathwill be the provided- file_name
 - Returns- Self
- The same model/manager instance to support method chaining. 
 - Raises- OSError
- If the file cannot be written due to I/O errors, permissions, or invalid path. 
- AttributeError
- If required attributes (e.g., - self.Simulations) or methods are missing.
- Exception
- Any exception propagated by - save_model_to_file(),- recompile(), or- restart_model().
 - Side Effects- Sets - self.pathto the resolved output path (string).
- Writes the model file to disk (overwrites if it exists). 
- If reload is True (default), recompiles the model and restarts the in-memory instance. 
 - Notes- Path normalization: The path is stringified via - str(file_name)just in case it is a pathlib object.
- Reload semantics: Post-save recompilation and restart ensure any code generation or cached reflection is refreshed to match the serialized model. 
 - Examples- check the current path before saving the model
- >>> from apsimNGpy.core.apsim import ApsimModel >>> from pathlib import Path >>> model = ApsimModel("Maize", out_path='saved_maize.apsimx') >>> model.path scratch\saved_maize.apsimx 
- Save to a new path and continue working with the refreshed instance
- >>> model.save(file_name='out_maize.apsimx', reload=True) # check the path >>> model.path 'out_maize.apsimx' # possible to run again the refreshed model. >>> model.run() 
- Save to a new path without refreshing the instance path
- >>> model = ApsimModel("Maize", out_path='saved_maize.apsimx') >>> model.save(file_name='out_maize.apsimx', reload=False) # check the current reference path for the model. >>> model.path 'scratch\saved_maize.apsimx' # When reload is False, the original referenced path remains as shown above 
 - As shown above, everything is saved in the scratch folder; if the path is not abolutely provided, e.g., a relative path. If the path is not provided as shown below, the reference path is the current path for the isntance model. - >>> model = ApsimModel("Maize", out_path='saved_maize.apsimx') >>> model.path 'scratch\saved_maize.apsimx' # save the model without providing the path. >>> model.save()# uses the default, in this case the defaul path is the existing path >>> model.path 'scratch\saved_maize.apsimx' - In the above case, both reload = - Falseor- True, will produce the same reference path for the live instance class.- property results(inherited)
 - Legacy method for retrieving simulation results. - This method is implemented as a - propertyto enable lazy loading—results are only loaded into memory when explicitly accessed. This design helps optimize- memoryusage, especially for- largesimulations.- It must be called only after invoking - run(). If accessed before the simulation is run, it will raise an error.- Notes- The - run()method should be called with a valid- report nameor a list of report names.
- If - report_namesis not provided (i.e.,- None), the system will inspect the model and automatically detect all available report components. These reports will then be used to collect the data.
- If multiple report names are used, their corresponding data tables will be concatenated along the rows. 
 - Returns- pd.DataFrame
- A DataFrame containing the simulation output results. 
 - Examples- >>> from apsimNGpy.core.apsim import ApsimModel # create an instance of ApsimModel class >>> model = ApsimModel("Maize", out_path="my_maize_model.apsimx") # run the simulation >>> model.run() # get the results >>> df = model.results # do something with the results e.g. get the mean of numeric columns >>> df.mean(numeric_only=True) Out[12]: CheckpointID 1.000000 SimulationID 1.000000 Maize.AboveGround.Wt 1225.099950 Maize.AboveGround.N 12.381196 Yield 5636.529504 Maize.Grain.Wt 563.652950 Maize.Grain.Size 0.284941 Maize.Grain.NumberFunction 1986.770519 Maize.Grain.Total.Wt 563.652950 Maize.Grain.N 7.459296 Maize.Total.Wt 1340.837427 - If there are more than one database tables or - reportsas called in APSIM, results are concatenated along the axis 0, implying along rows. The example below mimics this scenario.- >>> model.add_db_table( ... variable_spec=['[Clock].Today.Year as year', ... 'sum([Soil].Nutrient.TotalC)/1000 from 01-jan to [clock].Today as soc'], ... rename='soc' ... ) # inspect the reports >>> model.inspect_model('Models.Report', fullpath=False) ['Report', 'soc'] >>> model.run() >>> model.results CheckpointID SimulationID Zone ... source_table year soc 0 1 1 Field ... Report NaN NaN 1 1 1 Field ... Report NaN NaN 2 1 1 Field ... Report NaN NaN 3 1 1 Field ... Report NaN NaN 4 1 1 Field ... Report NaN NaN 5 1 1 Field ... Report NaN NaN 6 1 1 Field ... Report NaN NaN 7 1 1 Field ... Report NaN NaN 8 1 1 Field ... Report NaN NaN 9 1 1 Field ... Report NaN NaN 10 1 1 Field ... soc 1990.0 77.831512 11 1 1 Field ... soc 1991.0 78.501766 12 1 1 Field ... soc 1992.0 78.916339 13 1 1 Field ... soc 1993.0 78.707094 14 1 1 Field ... soc 1994.0 78.191686 15 1 1 Field ... soc 1995.0 78.573085 16 1 1 Field ... soc 1996.0 78.724598 17 1 1 Field ... soc 1997.0 79.043935 18 1 1 Field ... soc 1998.0 78.343111 19 1 1 Field ... soc 1999.0 78.872767 20 1 1 Field ... soc 2000.0 79.916413 [21 rows x 17 columns] - By default all the tables are returned and the column - source_tabletells us the source table for each row. Since- resultsis a property attribute, which does not take in any argument, we can only decide this when calling the- runmethod as shown below.- >>> model.run(report_name='soc') >>> model.results CheckpointID SimulationID Zone year soc source_table 0 1 1 Field 1990.0 77.831512 soc 1 1 1 Field 1991.0 78.501766 soc 2 1 1 Field 1992.0 78.916339 soc 3 1 1 Field 1993.0 78.707094 soc 4 1 1 Field 1994.0 78.191686 soc 5 1 1 Field 1995.0 78.573085 soc 6 1 1 Field 1996.0 78.724598 soc 7 1 1 Field 1997.0 79.043935 soc 8 1 1 Field 1998.0 78.343111 soc 9 1 1 Field 1999.0 78.872767 soc 10 1 1 Field 2000.0 79.916413 soc - The above example has dataset only from one database table specified at run time. - See also - Related API: - get_simulated_output().- get_simulated_output(self, report_names: 'Union[str, list]', axis=0, **kwargs)
 - Reads report data from CSV files generated by the simulation. More Advanced table-merging arguments will be introduced soon. - Parameters:- report_names: (str, iterable)
- Name or list names of report tables to read. These should match the report names in the simulation output. 
- axis: int, Optional. Default to 0
- concatenation axis numbers for multiple reports or database tables. if axis is 0, source_table column is populated to show source of the data for each row 
 - Returns:- pd.DataFrame
- Concatenated DataFrame containing the data from the specified reports. 
 - Raises:- ValueError
- If any of the requested report names are not found in the available tables. 
- RuntimeError
- If the simulation has not been - runsuccessfully before attempting to read data.
 - Examples- >>> from apsimNGpy.core.apsim import ApsimModel >>> model = ApsimModel(model='Maize') # replace with your path to the apsim template model >>> model.run() # if we are going to use get_simulated_output, no need to provide the report name in ``run()`` method >>> df = model.get_simulated_output(report_names="Report") SimulationName SimulationID CheckpointID ... Maize.Total.Wt Yield Zone 0 Simulation 1 1 ... 1728.427 8469.616 Field 1 Simulation 1 1 ... 920.854 4668.505 Field 2 Simulation 1 1 ... 204.118 555.047 Field 3 Simulation 1 1 ... 869.180 3504.000 Field 4 Simulation 1 1 ... 1665.475 7820.075 Field 5 Simulation 1 1 ... 2124.740 8823.517 Field 6 Simulation 1 1 ... 1235.469 3587.101 Field 7 Simulation 1 1 ... 951.808 2939.152 Field 8 Simulation 1 1 ... 1986.968 8379.435 Field 9 Simulation 1 1 ... 1689.966 7370.301 Field [10 rows x 16 columns] - This method also handles more than one reports as shown below. - >>> model.add_db_table( ... variable_spec=[ ... '[Clock].Today.Year as year', ... 'sum([Soil].Nutrient.TotalC)/1000 from 01-jan to [clock].Today as soc' ... ], ... rename='soc' ... ) # inspect the reports >>> model.inspect_model('Models.Report', fullpath=False) ['Report', 'soc'] >>> model.run() >>> model.get_simulated_output(["soc", "Report"], axis=0) CheckpointID SimulationID ... Maize.Grain.N Maize.Total.Wt 0 1 1 ... NaN NaN 1 1 1 ... NaN NaN 2 1 1 ... NaN NaN 3 1 1 ... NaN NaN 4 1 1 ... NaN NaN 5 1 1 ... NaN NaN 6 1 1 ... NaN NaN 7 1 1 ... NaN NaN 8 1 1 ... NaN NaN 9 1 1 ... NaN NaN 10 1 1 ... NaN NaN 11 1 1 ... 11.178291 1728.427114 12 1 1 ... 6.226327 922.393712 13 1 1 ... 0.752357 204.108770 14 1 1 ... 4.886844 869.242545 15 1 1 ... 10.463854 1665.483701 16 1 1 ... 11.253916 2124.739830 17 1 1 ... 5.044417 1261.674967 18 1 1 ... 3.955080 951.303260 19 1 1 ... 11.080878 1987.106980 20 1 1 ... 9.751001 1693.893386 [21 rows x 17 columns] - >>> model.get_simulated_output(['soc', 'Report'], axis=1) CheckpointID SimulationID ... Maize.Grain.N Maize.Total.Wt 0 1 1 ... 11.178291 1728.427114 1 1 1 ... 6.226327 922.393712 2 1 1 ... 0.752357 204.108770 3 1 1 ... 4.886844 869.242545 4 1 1 ... 10.463854 1665.483701 5 1 1 ... 11.253916 2124.739830 6 1 1 ... 5.044417 1261.674967 7 1 1 ... 3.955080 951.303260 8 1 1 ... 11.080878 1987.106980 9 1 1 ... 9.751001 1693.893386 10 1 1 ... NaN NaN [11 rows x 19 columns] - See also - Related API: - results.- run(self, report_name: 'Union[tuple, list, str]' = None, simulations: 'Union[tuple, list]' = None, clean_up: 'bool' = True, verbose: 'bool' = False, timeout: 'int' = 800, **kwargs)
- Run APSIM model simulations to write the results either to SQLite data base or csv file. Does not collect the
- simulated output inot memory. For this purpose. Please see related APIs: - resultsand- get_simulated_output().
 - Parameters- report_name: Union[tuple, list, str], optional
- Defaults to APSIM default Report Name if not specified. - If iterable, all report tables are read and aggregated into one DataFrame. 
- simulations: Union[tuple, list], optional
- List of simulation names to run. If None, runs all simulations. 
- clean_up: bool, optional
- If True, removes the existing database before running. 
- verbose: bool, optional
- If True, enables verbose output for debugging. The method continues with debugging info anyway if the run was unsuccessful 
- timeout: int, defualt is 800 seconds
- Enforces a timeout and returns a CompletedProcess-like object. 
- kwargs: **dict
- Additional keyword arguments, e.g., to_csv=True, use this flag to correct results from a csv file directly stored at the location of the running apsimx file. 
 - Warning:- In my experience with Models.exe, CSV outputs are not always overwritten; after edits, stale results can persist. Proceed with caution. - Returns- Instance of the respective model class e.g., ApsimModel, ExperimentManager. 
 - RuntimeError
- Raised if the - APSIMrun is unsuccessful. Common causes include- missing meteorological files, mismatched simulation- startdates with- weatherdata, or other- configuration issues.
 - Example: - Instantiate an - apsimNGpy.core.apsim.ApsimModelobject and run:- from apsimNGpy.core.apsim import ApsimModel model = ApsimModel(model= 'Maize')# replace with your path to the apsim template model model.run(report_name = "Report") # check if the run was successful model.ran_ok 'True' - Note - Updates the - ran_okflag to- Trueif no error was encountered.- See also - Related APIs: - resultsand- get_simulated_output().- rename_model(self, model_type, *, old_name, new_name) (inherited)
- Renames a model within the APSIM simulation tree. - This method searches for a model of the specified type and current name, then updates its name to the new one provided. After renaming, it saves the updated simulation file to enforce the changes. - model_typestr
- The type of the model to rename (e.g., “Manager”, “Clock”, etc.). 
- old_namestr
- The current name of the model to be renamed. 
- new_namestr
- The new name to assign to the model. 
 - selfobject
- Returns the modified object to allow for method chaining. 
 - ValueError
- If the model of the specified type and name is not found. 
 - Tip - This method uses - get_or_check_modelwith action=’get’ to locate the model, and then updates the model’s- Nameattribute. The model is serialized using the- save()immediately after to apply and enfoce the change.- >>> from apsimNGpy.core.apsim import ApsimModel >>> model = ApsimModel(model = 'Maize', out_path='my_maize.apsimx') >>> model.rename_model(model_type="Models.Core.Simulation", old_name ='Simulation', new_name='my_simulation') # check if it has been successfully renamed >>> model.inspect_model(model_type='Models.Core.Simulation', fullpath = False) ['my_simulation'] # The alternative is to use model.inspect_file to see your changes >>> model.inspect_file() └── Simulations: .Simulations ├── DataStore: .Simulations.DataStore └── my_simulation: .Simulations.my_simulation ├── Clock: .Simulations.my_simulation.Clock ├── Field: .Simulations.my_simulation.Field │ ├── Fertilise at sowing: .Simulations.my_simulation.Field.Fertilise at sowing │ ├── Fertiliser: .Simulations.my_simulation.Field.Fertiliser │ ├── Harvest: .Simulations.my_simulation.Field.Harvest │ ├── Maize: .Simulations.my_simulation.Field.Maize │ ├── Report: .Simulations.my_simulation.Field.Report │ ├── Soil: .Simulations.my_simulation.Field.Soil │ │ ├── Chemical: .Simulations.my_simulation.Field.Soil.Chemical │ │ ├── NH4: .Simulations.my_simulation.Field.Soil.NH4 │ │ ├── NO3: .Simulations.my_simulation.Field.Soil.NO3 │ │ ├── Organic: .Simulations.my_simulation.Field.Soil.Organic │ │ ├── Physical: .Simulations.my_simulation.Field.Soil.Physical │ │ │ └── MaizeSoil: .Simulations.my_simulation.Field.Soil.Physical.MaizeSoil │ │ ├── Urea: .Simulations.my_simulation.Field.Soil.Urea │ │ └── Water: .Simulations.my_simulation.Field.Soil.Water │ ├── Sow using a variable rule: .Simulations.my_simulation.Field.Sow using a variable rule │ └── SurfaceOrganicMatter: .Simulations.my_simulation.Field.SurfaceOrganicMatter ├── Graph: .Simulations.my_simulation.Graph │ └── Series: .Simulations.my_simulation.Graph.Series ├── MicroClimate: .Simulations.my_simulation.MicroClimate ├── SoilArbitrator: .Simulations.my_simulation.SoilArbitrator ├── Summary: .Simulations.my_simulation.Summary └── Weather: .Simulations.my_simulation.Weather 
 - See also - Related APIs: - add_model(),- clone_model(), and- move_model().- clone_model(self, model_type, model_name, adoptive_parent_type, rename=None, adoptive_parent_name=None) (inherited)
 - Clone an existing - modeland move it to a specified parent within the simulation structure. The function modifies the simulation structure by adding the cloned model to the designated parent.- This function is useful when a model instance needs to be duplicated and repositioned in the - APSIMsimulation hierarchy without manually redefining its structure.- Parameters:- model_type: Models
- The type of the model to be cloned, e.g., - Models.Simulationor- Models.Clock.
- model_name: str
- The unique identification name of the model instance to be cloned, e.g., - "clock1".
- adoptive_parent_type: Models
- The type of the new parent model where the cloned model will be placed. 
- rename: str, optional
- The new name for the cloned model. If not provided, the clone will be renamed using the original name with a - _clonesuffix.
- adoptive_parent_name: str, optional
- The name of the parent model where the cloned model should be moved. If not provided, the model will be placed under the default parent of the specified type. 
- in_place: bool, optional
- If - True, the cloned model remains in the same location but is duplicated. Defaults to- False.
 - Returns:- None - Example:- Create a cloned version of - "clock1"and place it under- "Simulation"with the new name- "new_clock:- >>> from apsimNGpy.core.apsim import ApsimModel >>> model = ApsimModel('Maize', out_path='my_maize.apsimx') >>> model.clone_model(model_type='Models.Core.Simulation', model_name="Simulation", ... rename="Sim2", adoptive_parent_type = 'Models.Core.Simulations', ... adoptive_parent_name='Simulations') >>> model.inspect_file() └── Simulations: .Simulations ├── DataStore: .Simulations.DataStore ├── Sim2: .Simulations.Sim2 │ ├── Clock: .Simulations.Sim2.Clock │ ├── Field: .Simulations.Sim2.Field │ │ ├── Fertilise at sowing: .Simulations.Sim2.Field.Fertilise at sowing │ │ ├── Fertiliser: .Simulations.Sim2.Field.Fertiliser │ │ ├── Harvest: .Simulations.Sim2.Field.Harvest │ │ ├── Maize: .Simulations.Sim2.Field.Maize │ │ ├── Report: .Simulations.Sim2.Field.Report │ │ ├── Soil: .Simulations.Sim2.Field.Soil │ │ │ ├── Chemical: .Simulations.Sim2.Field.Soil.Chemical │ │ │ ├── NH4: .Simulations.Sim2.Field.Soil.NH4 │ │ │ ├── NO3: .Simulations.Sim2.Field.Soil.NO3 │ │ │ ├── Organic: .Simulations.Sim2.Field.Soil.Organic │ │ │ ├── Physical: .Simulations.Sim2.Field.Soil.Physical │ │ │ │ └── MaizeSoil: .Simulations.Sim2.Field.Soil.Physical.MaizeSoil │ │ │ ├── Urea: .Simulations.Sim2.Field.Soil.Urea │ │ │ └── Water: .Simulations.Sim2.Field.Soil.Water │ │ ├── Sow using a variable rule: .Simulations.Sim2.Field.Sow using a variable rule │ │ ├── SurfaceOrganicMatter: .Simulations.Sim2.Field.SurfaceOrganicMatter │ │ └── soc_table: .Simulations.Sim2.Field.soc_table │ ├── Graph: .Simulations.Sim2.Graph │ │ └── Series: .Simulations.Sim2.Graph.Series │ ├── MicroClimate: .Simulations.Sim2.MicroClimate │ ├── SoilArbitrator: .Simulations.Sim2.SoilArbitrator │ ├── Summary: .Simulations.Sim2.Summary │ └── Weather: .Simulations.Sim2.Weather └── Simulation: .Simulations.Simulation ├── Clock: .Simulations.Simulation.Clock ├── Field: .Simulations.Simulation.Field │ ├── Fertilise at sowing: .Simulations.Simulation.Field.Fertilise at sowing │ ├── Fertiliser: .Simulations.Simulation.Field.Fertiliser │ ├── Harvest: .Simulations.Simulation.Field.Harvest │ ├── Maize: .Simulations.Simulation.Field.Maize │ ├── Report: .Simulations.Simulation.Field.Report │ ├── Soil: .Simulations.Simulation.Field.Soil │ │ ├── Chemical: .Simulations.Simulation.Field.Soil.Chemical │ │ ├── NH4: .Simulations.Simulation.Field.Soil.NH4 │ │ ├── NO3: .Simulations.Simulation.Field.Soil.NO3 │ │ ├── Organic: .Simulations.Simulation.Field.Soil.Organic │ │ ├── Physical: .Simulations.Simulation.Field.Soil.Physical │ │ │ └── MaizeSoil: .Simulations.Simulation.Field.Soil.Physical.MaizeSoil │ │ ├── Urea: .Simulations.Simulation.Field.Soil.Urea │ │ └── Water: .Simulations.Simulation.Field.Soil.Water │ ├── Sow using a variable rule: .Simulations.Simulation.Field.Sow using a variable rule │ ├── SurfaceOrganicMatter: .Simulations.Simulation.Field.SurfaceOrganicMatter │ └── soc_table: .Simulations.Simulation.Field.soc_table ├── Graph: .Simulations.Simulation.Graph │ └── Series: .Simulations.Simulation.Graph.Series ├── MicroClimate: .Simulations.Simulation.MicroClimate ├── SoilArbitrator: .Simulations.Simulation.SoilArbitrator ├── Summary: .Simulations.Simulation.Summary └── Weather: .Simulations.Simulation.Weather - See also - Related APIs: - add_model()and- move_model().- static find_model(model_name: 'str') (inherited)
 - Find a model from the Models namespace and return its path. - Parameters:- model_name: (str)
- The name of the model to find. 
- model_namespace: (object, optional):
- The root namespace (defaults to Models). 
- path: (str, optional)
- The accumulated path to the model. 
- Returns:
- str: The full path to the model if found, otherwise None. 
 - Example:- >>> from apsimNGpy import core # doctest: >>> model =core.apsim.ApsimModel(model = "Maize", out_path ='my_maize.apsimx') >>> model.find_model("Weather") 'Models.Climate.Weather' >>> model.find_model("Clock") 'Models.Clock' - add_model(self, model_type, adoptive_parent, rename=None, adoptive_parent_name=None, verbose=False, source='Models', source_model_name=None, override=True, **kwargs) (inherited)
 - Adds a model to the Models Simulations namespace. - Some models are restricted to specific parent models, meaning they can only be added to compatible models. For example, a Clock model cannot be added to a Soil model. - Parameters:- model_type: (str or Models object)
- The type of model to add, e.g., - Models.Clockor just- "Clock". if the APSIM Models namespace is exposed to the current script, then model_class can be Models.Clock without strings quotes
- rename (str):
- The new name for the model. 
- adoptive_parent: (Models object)
- The target parent where the model will be added or moved e.g - Models.Clockor- Clockas string all are valid
- adoptive_parent_name: (Models object, optional)
- Specifies the parent name for precise location. e.g., - Models.Core.Simulationor- Simulationsall are valid
- source: Models, str, CoreModel, ApsimModel object: defaults to Models namespace.
- The source can be an existing Models or string name to point to one of the default model examples, which we can extract the model from 
- override: bool, optional defaults to True.
- When - True(recommended), it deletes any model with the same name and type at the suggested parent location before adding the new model if- Falseand proposed model to be added exists at the parent location;- APSIMautomatically generates a new name for the newly added model. This is not recommended.
- Returns:
- None: 
 - Modelsare modified in place, so models retains the same reference.- Caution - Added models from - Models namespaceare initially empty. Additional configuration is required to set parameters. For example, after adding a Clock module, you must set the start and end dates.- Example- >>> from apsimNGpy import core >>> from apsimNGpy.core.core import Models >>> model = core.apsim.ApsimModel("Maize") >>> model.remove_model(Models.Clock) # first delete the model >>> model.add_model(Models.Clock, adoptive_parent=Models.Core.Simulation, rename='Clock_replaced', verbose=False) - >>> model.add_model(model_class=Models.Core.Simulation, adoptive_parent=Models.Core.Simulations, rename='Iowa') - >>> model.preview_simulation() - >>> model.add_model( ... Models.Core.Simulation, ... adoptive_parent='Simulations', ... rename='soybean_replaced', ... source='Soybean') # basically adding another simulation from soybean to the maize simulation - See also - Related APIs: - clone_model()and- move_model().- detect_model_type(self, model_instance: 'Union[str, Models]') (inherited)
 - Detects the model type from a given APSIM model instance or path string. - edit_model_by_path(self, path: 'str', **kwargs) (inherited)
 - Edit a model component located by an APSIM path, dispatching to type-specific editors. - This method resolves a node under - instance.Simulationsusing an APSIM path, then edits that node by delegating to an editor based on the node’s runtime type. It supports common APSIM NG components (e.g., Weather, Manager, Cultivar, Clock, Soil subcomponents, Report, SurfaceOrganicMatter). Unsupported types raise- NotImplementedError.- Parameters- pathstr
- APSIM path to a target node under - self.Simulations(e.g., ‘.Simulations.Simulations.Weather’ or a similar canonical path).
 - kwargs- Additional keyword arguments specific to the model type. Atleast one key word argument is required. These vary by component: - Models.Climate.Weather:
- weather_file(str): Path to the weather- .metfile.
- Models.Clock:
- Date properties such as - Startand- Endin ISO format (e.g., ‘2021-01-01’).
- Models.Manager:
- Variables to update in the Manager script using - update_mgt_by_path.
- Soils.Physical | Soils.Chemical | Soils.Organic | Soils.Water:
- Variables to replace using - replace_soils_values_by_path.- Valid - parametersare shown below;- Soil Model Type - Supported key word arguments - Physical - AirDry, BD, DUL, DULmm, Depth, DepthMidPoints, KS, LL15, LL15mm, PAWC, PAWCmm, SAT, SATmm, SW, SWmm, Thickness, ThicknessCumulative - Organic - CNR, Carbon, Depth, FBiom, FInert, FOM, Nitrogen, SoilCNRatio, Thickness - Chemical - Depth, PH, Thickness 
- Models.Report:
- report_name (str):
- Name of the report model (optional depending on structure). 
- variable_spec` (list[str] or str):
- Variables to include in the report. 
- set_event_names` (list[str], optional):
- Events that trigger the report. 
 
- Models.PMF.Cultivar:
- commands (str):
- APSIM path to the cultivar parameter to update. 
- values: (Any)
- Value to assign. 
- cultivar_manager: (str)
- Name of the Manager script managing the cultivar, which must contain the - CultivarNameparameter. Required to propagate updated cultivar values, as APSIM treats cultivars as read-only.
 
 - Warning - ValueError
- If the model instance is not found, required kwargs are missing, or - kwargsis empty.
- NotImplementedError
- If the logic for the specified - model_classis not implemented.
 - Examples- Edit a Manager script parameter: - model.edit_model_by_path( ".Simulations.Simulation.Field.Sow using a variable rule", verbose=True, Population=10) - Point a Weather component to a new - .metfile:- model.edit_model_by_path( path=".Simulations.Simulation.Weather", FileName="data/weather/Ames_2020.met") - Change Clock dates: - model.edit_model_by_path( ".Simulations.Simulation.Clock", StartDate="2020-01-01", EndDate="2020-12-31") - Update soil water properties at a specific path: - model.edit_model_by_path( ".Simulations.Simulation.Field.Soil.Physical", LL15="[0.26, 0.18, 0.10, 0.12]") - Apply cultivar edits across selected simulations: - model.edit_model_by_path( ".Simulations.Simulation.Field.Maize.CultivarFolder.mh18", simulations=("Sim_A", "Sim_B"), verbose=True, **{"Phenology.EmergencePhase.Photoperiod": "Short"} ) - See also - Related API: - edit_model().- edit_model(self, model_type: 'str', model_name: 'str', simulations: 'Union[str, list]' = 'all', verbose=False, **kwargs) (inherited)
 - Modify various APSIM model components by specifying the model type and name across given simulations. - Parameters- model_type: str, required
- Type of the model component to modify (e.g., ‘Clock’, ‘Manager’, ‘Soils.Physical’, etc.). 
- simulations: Union[str, list], optional
- A simulation name or list of simulation names in which to search. Defaults to all simulations in the model. 
- model_name: str, required
- Name of the model instance to modify. 
- verbose: bool, optional
- print the status of the editting activities 
 - kwargs- Additional keyword arguments specific to the model type. Atleast one key word argument is required. These vary by component: - Models.Climate.Weather:
- weather_file(str): Path to the weather- .metfile.
- Models.Clock:
- Date properties such as - Startand- Endin ISO format (e.g., ‘2021-01-01’).
- Models.Manager:
- Variables to update in the Manager script using - update_mgt_by_path.
- Soils.Physical | Soils.Chemical | Soils.Organic | Soils.Water:
- Variables to replace using - replace_soils_values_by_path.- Valid - parametersare shown below;- Soil Model Type - Supported key word arguments - Physical - AirDry, BD, DUL, DULmm, Depth, DepthMidPoints, KS, LL15, LL15mm, PAWC, PAWCmm, SAT, SATmm, SW, SWmm, Thickness, ThicknessCumulative - Organic - CNR, Carbon, Depth, FBiom, FInert, FOM, Nitrogen, SoilCNRatio, Thickness - Chemical - Depth, PH, Thickness 
- Models.Report:
- report_name (str):
- Name of the report model (optional depending on structure). 
- variable_spec` (list[str] or str):
- Variables to include in the report. 
- set_event_names` (list[str], optional):
- Events that trigger the report. 
 
- Models.PMF.Cultivar:
- commands (str):
- APSIM path to the cultivar parameter to update. 
- values: (Any)
- Value to assign. 
- cultivar_manager: (str)
- Name of the Manager script managing the cultivar, which must contain the - CultivarNameparameter. Required to propagate updated cultivar values, as APSIM treats cultivars as read-only.
 
 - Warning - ValueError
- If the model instance is not found, required kwargs are missing, or - kwargsis empty.
- NotImplementedError
- If the logic for the specified - model_classis not implemented.
 - Examples: - from apsimNGpy.core.apsim import ApsimModel model = ApsimModel(model='Maize') - Example of how to edit a cultivar model: - model.edit_model(model_type='Cultivar', simulations='Simulation', commands='[Phenology].Juvenile.Target.FixedValue', values=256, model_name='B_110', new_cultivar_name='B_110_edited', cultivar_manager='Sow using a variable rule') - Edit a soil organic matter module: - model.edit_model( model_type='Organic', simulations='Simulation', model_name='Organic', Carbon=1.23) - Edit multiple soil layers: - model.edit_model( model_type='Organic', simulations='Simulation', model_name='Organic', Carbon=[1.23, 1.0]) - Example of how to edit solute models: - model.edit_model( model_type='Solute', simulations='Simulation', model_name='NH4', InitialValues=0.2) model.edit_model( model_class='Solute', simulations='Simulation', model_name='Urea', InitialValues=0.002) - Edit a manager script: - model.edit_model( model_type='Manager', simulations='Simulation', model_name='Sow using a variable rule', population=8.4) - Edit surface organic matter parameters: - model.edit_model( model_type='SurfaceOrganicMatter', simulations='Simulation', model_name='SurfaceOrganicMatter', InitialResidueMass=2500) model.edit_model( model_type='SurfaceOrganicMatter', simulations='Simulation', model_name='SurfaceOrganicMatter', InitialCNR=85) - Edit Clock start and end dates: - model.edit_model( model_type='Clock', simulations='Simulation', model_name='Clock', Start='2021-01-01', End='2021-01-12') - Edit report _variables: - model.edit_model( model_type='Report', simulations='Simulation', model_name='Report', variable_spec='[Maize].AboveGround.Wt as abw') - Multiple report _variables: - model.edit_model( model_type='Report', simulations='Simulation', model_name='Report', variable_spec=[ '[Maize].AboveGround.Wt as abw', '[Maize].Grain.Total.Wt as grain_weight']) @param simulations: - See also - Related API: - edit_model_by_path().- add_report_variable(self, variable_spec: 'Union[list, str, tuple]', report_name: 'str' = None, set_event_names: 'Union[str, list]' = None) (inherited)
 - This adds a report variable to the end of other _variables, if you want to change the whole report use change_report - Parameters- variable_spec: str, required.
- list of text commands for the report _variables e.g., ‘[Clock].Today as Date’ 
- param report_name: str, optional.
- Name of the report variable if not specified, the first accessed report object will be altered 
- set_event_names: list or str, optional.
- A list of APSIM events that trigger the recording of _variables. Defaults to [‘[Clock].EndOfYear’] if not provided. 
 - Returns- returns instance of apsimNGpy.core.core.apsim.ApsimModel or apsimNGpy.core.core.apsim.CoreModel - Raise- raises an - ValueErrorif a report is not found- Examples- >>> from apsimNGpy.core.apsim import ApsimModel >>> model = ApsimModel('Maize') >>> model.add_report_variable(variable_spec = '[Clock].Today as Date', report_name = 'Report') # isnepct the report >>> model.inspect_model_parameters(model_type='Models.Report', model_name='Report') {'EventNames': ['[Maize].Harvesting'], 'VariableNames': ['[Clock].Today', '[Maize].Phenology.CurrentStageName', '[Maize].AboveGround.Wt', '[Maize].AboveGround.N', '[Maize].Grain.Total.Wt*10 as Yield', '[Maize].Grain.Wt', '[Maize].Grain.Size', '[Maize].Grain.NumberFunction', '[Maize].Grain.Total.Wt', '[Maize].Grain.N', '[Maize].Total.Wt', '[Clock].Today as Date']} The new report variable is appended at the end of the existing ones - See also - Related APIs: - remove_report_variable()and- add_db_table().- remove_report_variable(self, variable_spec: 'Union[list, tuple, str]', report_name: 'str | None' = None) (inherited)
 - Remove one or more variable expressions from an APSIM Report component. - Parameters- variable_specstr | list[str] | tuple[str, …]
- Variable expression(s) to remove, e.g. - "[Clock].Today"or- "[Clock].Today as Date". You may pass a single string or a list/tuple. Matching is done by exact text after whitespace normalization (consecutive spaces collapsed), so minor spacing differences are tolerated.
- report_namestr, optional
- Name of the Report component to modify. If - None, the default resolver (- self._get_report) is used to locate the target report.
 - Returns- list[str]
- The updated list of variable expressions remaining in the report (in original order, without duplicates). 
 - Notes- Variables not present are ignored (no error raised). 
- Order is preserved; duplicates are removed. 
- The model is saved at the end of this call. 
 - Examples- >>> model= CoreModel('Maize') >>> model.add_report_variable(variable_spec='[Clock].Today as Date', report_name='Report') >>> model.inspect_model_parameters('Models.Report', 'Report')['VariableNames'] ['[Clock].Today', '[Maize].Phenology.CurrentStageName', '[Maize].AboveGround.Wt', '[Maize].AboveGround.N', '[Maize].Grain.Total.Wt*10 as Yield', '[Maize].Grain.Wt', '[Maize].Grain.Size', '[Maize].Grain.NumberFunction', '[Maize].Grain.Total.Wt', '[Maize].Grain.N', '[Maize].Total.Wt', '[Clock].Today as Date'] >>> model.remove_report_variable(variable_spec='[Clock].Today as Date', report_name='Report') >>> model.inspect_model_parameters('Models.Report', 'Report')['VariableNames'] ['[Clock].Today', '[Maize].Phenology.CurrentStageName', '[Maize].AboveGround.Wt', '[Maize].AboveGround.N', '[Maize].Grain.Total.Wt*10 as Yield', '[Maize].Grain.Wt', '[Maize].Grain.Size', '[Maize].Grain.NumberFunction', '[Maize].Grain.Total.Wt', '[Maize].Grain.N', '[Maize].Total.Wt'] - See also - Related APIs: - add_report_variable()and- add_db_table().- remove_model(self, model_type: 'Models', model_name: 'str' = None) (inherited)
 - Removes a model from the APSIM Models.Simulations namespace. - model_type: Models
- The type of the model to remove (e.g., - Models.Clock). This parameter is required.
- model_name: str, optional
- The name of the specific model instance to remove (e.g., - "Clock"). If not provided, all models of the specified type may be removed.
 - Returns: - None - Example: - from apsimNGpy import core from apsimNGpy.core.core import Models model = core.base_data.load_default_simulations(crop = 'Maize') model.remove_model(Models.Clock) #deletes the clock node model.remove_model(Models.Climate.Weather) #deletes the weather node - See also - Related APIs: - clone_model()and- add_model().- move_model(self, model_type: 'Models', new_parent_type: 'Models', model_name: 'str' = None, new_parent_name: 'str' = None, verbose: 'bool' = False, simulations: 'Union[str, list]' = None) (inherited)
 - Args:- model_type: Models
- type of model tied to Models Namespace 
- new_parent_type: Models.
- New model parent type (Models) 
- model_name: str
- Name of the model e.g., Clock, or Clock2, whatever name that was given to the model 
- new_parent_name``: str
- The new parent names =Field2, this field is optional but important if you have nested simulations 
 - Returns:- returns instance of apsimNGpy.core.core.apsim.ApsimModel or apsimNGpy.core.core.apsim.CoreModel - replicate_file(self, k: 'int', path: 'os.PathLike' = None, suffix: 'str' = 'replica') (inherited)
 - Replicates a file - ktimes. Parameters ———- path:str default is None- If specified, the copies will be placed in that dir_path with incremented filenames. If no path is specified, copies are created in the same dir_path as the original file, also with incremented filenames. - k int:
- The number of copies to create. 
 - suffix: str, optional
- a suffix to attach with the copies. Default to “replicate” 
 
 - Returns:- A generator(str) is returned. 
 - get_crop_replacement(self, Crop) (inherited)
 - param Crop:
- crop to get the replacement 
- return:
- System.Collections.Generic.IEnumerable APSIM plant object 
 - inspect_model_parameters(self, model_type: 'Union[Models, str]', model_name: 'str', simulations: 'Union[str, list]' = <UserOptionMissing>, parameters: 'Union[list, set, tuple, str]' = 'all', **kwargs) (inherited)
 - Inspect the input parameters of a specific - APSIMmodel type instance within selected simulations.- This method consolidates functionality previously spread across - examine_management_info,- read_cultivar_params, and other inspectors, allowing a unified interface for querying parameters of interest across a wide range of APSIM models.- Parameters- model_type: str required
- The name of the model class to inspect (e.g., ‘Clock’, ‘Manager’, ‘Physical’, ‘Chemical’, ‘Water’, ‘Solute’). Shorthand names are accepted (e.g., ‘Clock’, ‘Weather’) as well as fully qualified names (e.g., ‘Models.Clock’, ‘Models.Climate.Weather’). 
- simulations: Union[str, list]
- A single simulation name or a list of simulation names within the APSIM context to inspect. 
- model_name: str
- The name of the specific model instance within each simulation. For example, if - model_class='Solute',- model_namemight be ‘NH4’, ‘Urea’, or another solute name.
- parameters: Union[str, set, list, tuple], optional
- A specific parameter or a collection of parameters to inspect. Defaults to - 'all', in which case all accessible attributes are returned. For layered models like Solute, valid parameters include- Depth,- InitialValues,- SoluteBD,- Thickness, etc.
- kwargs:
- Reserved for future compatibility; currently unused. 
 - Returns- Union[dict, list, pd.DataFrame, Any] The format depends on the model type as shown below: - Weather:
- file path(s) as string(s) 
- Clock:
- dictionary with start and end datetime objects (or a single datetime if only one is requested). 
- Manager:
- dictionary of script parameters. 
- Soil-related:
- pandas DataFrame of layered values. 
- Report:
- A dictionary with - VariableNamesand- EventNames.
 - Cultivar: dictionary of parameter strings. - Raises- ValueError
- If the specified model or simulation is not found or arguments are invalid. 
- NotImplementedError
- If the model type is unsupported by the current interface. 
 - Requirements- APSIM Next Generation Python bindings ( - apsimNGpy)
- Python 3.10+ 
 - Examples: - from apsimNGpy.core.apsim import ApsimModel model_instance = ApsimModel('Maize') - Inspect full soil - Organicprofile:- model_instance.inspect_model_parameters('Organic', simulations='Simulation', model_name='Organic') CNR Carbon Depth FBiom ... FOM Nitrogen SoilCNRatio Thickness 0 12.0 1.20 0-150 0.04 ... 347.129032 0.100 12.0 150.0 1 12.0 0.96 150-300 0.02 ... 270.344362 0.080 12.0 150.0 2 12.0 0.60 300-600 0.02 ... 163.972144 0.050 12.0 300.0 3 12.0 0.30 600-900 0.02 ... 99.454133 0.025 12.0 300.0 4 12.0 0.18 900-1200 0.01 ... 60.321981 0.015 12.0 300.0 5 12.0 0.12 1200-1500 0.01 ... 36.587131 0.010 12.0 300.0 6 12.0 0.12 1500-1800 0.01 ... 22.191217 0.010 12.0 300.0 [7 rows x 9 columns] - Inspect soil - Physicalprofile:- model_instance.inspect_model_parameters('Physical', simulations='Simulation', model_name='Physical') AirDry BD DUL ... SWmm Thickness ThicknessCumulative 0 0.130250 1.010565 0.521000 ... 78.150033 150.0 150.0 1 0.198689 1.071456 0.496723 ... 74.508522 150.0 300.0 2 0.280000 1.093939 0.488438 ... 146.531282 300.0 600.0 3 0.280000 1.158613 0.480297 ... 144.089091 300.0 900.0 4 0.280000 1.173012 0.471584 ... 141.475079 300.0 1200.0 5 0.280000 1.162873 0.457071 ... 137.121171 300.0 1500.0 6 0.280000 1.187495 0.452332 ... 135.699528 300.0 1800.0 [7 rows x 17 columns] - Inspect soil - Chemicalprofile:- model_instance.inspect_model_parameters('Chemical', simulations='Simulation', model_name='Chemical') Depth PH Thickness 0 0-150 8.0 150.0 1 150-300 8.0 150.0 2 300-600 8.0 300.0 3 600-900 8.0 300.0 4 900-1200 8.0 300.0 5 1200-1500 8.0 300.0 6 1500-1800 8.0 300.0 - Inspect one or more specific parameters: - model_instance.inspect_model_parameters('Organic', simulations='Simulation', model_name='Organic', parameters='Carbon') Carbon 0 1.20 1 0.96 2 0.60 3 0.30 4 0.18 5 0.12 6 0.12 - Inspect more than one specific properties: - model_instance.inspect_model_parameters('Organic', simulations='Simulation', model_name='Organic', parameters=['Carbon', 'CNR']) Carbon CNR 0 1.20 12.0 1 0.96 12.0 2 0.60 12.0 3 0.30 12.0 4 0.18 12.0 5 0.12 12.0 6 0.12 12.0 - Inspect Report module attributes: - model_instance.inspect_model_parameters('Report', simulations='Simulation', model_name='Report') {'EventNames': ['[Maize].Harvesting'], 'VariableNames': ['[Clock].Today', '[Maize].Phenology.CurrentStageName', '[Maize].AboveGround.Wt', '[Maize].AboveGround.N', '[Maize].Grain.Total.Wt*10 as Yield', '[Maize].Grain.Wt', '[Maize].Grain.Size', '[Maize].Grain.NumberFunction', '[Maize].Grain.Total.Wt', '[Maize].Grain.N', '[Maize].Total.Wt']} - Specify only EventNames: - model_instance.inspect_model_parameters(‘Report’, simulations=’Simulation’, model_name=’Report’, parameters=’EventNames’) {‘EventNames’: [‘[Maize].Harvesting’]} - Inspect a weather file path: - model_instance.inspect_model_parameters('Weather', simulations='Simulation', model_name='Weather') '%root%/Examples/WeatherFiles/AU_Dalby.met' - Inspect manager script parameters: - model_instance.inspect_model_parameters('Manager', simulations='Simulation', model_name='Sow using a variable rule') {'Crop': 'Maize', 'StartDate': '1-nov', 'EndDate': '10-jan', 'MinESW': '100.0', 'MinRain': '25.0', 'RainDays': '7', 'CultivarName': 'Dekalb_XL82', 'SowingDepth': '30.0', 'RowSpacing': '750.0', 'Population': '10'} - Inspect manager script by specifying one or more parameters: - model_instance.inspect_model_parameters('Manager', simulations='Simulation', model_name='Sow using a variable rule', parameters='Population') {'Population': '10'} - Inspect cultivar parameters: - model_instance.inspect_model_parameters('Cultivar', simulations='Simulation', model_name='B_110') # lists all path specifications for B_110 parameters abd their values model_instance.inspect_model_parameters('Cultivar', simulations='Simulation', model_name='B_110', parameters='[Phenology].Juvenile.Target.FixedValue') {'[Phenology].Juvenile.Target.FixedValue': '210'} - Inspect surface organic matter module: - model_instance.inspect_model_parameters('Models.Surface.SurfaceOrganicMatter', simulations='Simulation', model_name='SurfaceOrganicMatter') {'NH4': 0.0, 'InitialResidueMass': 500.0, 'StandingWt': 0.0, 'Cover': 0.0, 'LabileP': 0.0, 'LyingWt': 0.0, 'InitialCNR': 100.0, 'P': 0.0, 'InitialCPR': 0.0, 'SurfOM': <System.Collections.Generic.List[SurfOrganicMatterType] object at 0x000001DABDBB58C0>, 'C': 0.0, 'N': 0.0, 'NO3': 0.0} - Inspect a few parameters as needed: - model_instance.inspect_model_parameters('Models.Surface.SurfaceOrganicMatter', simulations='Simulation', ... model_name='SurfaceOrganicMatter', parameters={'InitialCNR', 'InitialResidueMass'}) {'InitialCNR': 100.0, 'InitialResidueMass': 500.0} - Inspect a clock: - model_instance.inspect_model_parameters('Clock', simulations='Simulation', model_name='Clock') {'End': datetime.datetime(2000, 12, 31, 0, 0), 'Start': datetime.datetime(1990, 1, 1, 0, 0)} - Inspect a few Clock parameters as needed: - model_instance.inspect_model_parameters('Clock', simulations='Simulation', model_name='Clock', parameters='End') datetime.datetime(2000, 12, 31, 0, 0) - Access specific components of the datetime object e.g., year, month, day, hour, minute: - model_instance.inspect_model_parameters('Clock', simulations='Simulation', model_name='Clock', parameters='Start').year # gets the start year only 1990 - Inspect solute models: - model_instance.inspect_model_parameters('Solute', simulations='Simulation', model_name='Urea') Depth InitialValues SoluteBD Thickness 0 0-150 0.0 1.010565 150.0 1 150-300 0.0 1.071456 150.0 2 300-600 0.0 1.093939 300.0 3 600-900 0.0 1.158613 300.0 4 900-1200 0.0 1.173012 300.0 5 1200-1500 0.0 1.162873 300.0 6 1500-1800 0.0 1.187495 300.0 model_instance.inspect_model_parameters('Solute', simulations='Simulation', model_name='NH4', parameters='InitialValues') InitialValues 0 0.1 1 0.1 2 0.1 3 0.1 4 0.1 5 0.1 6 0.1 - See also - Related API: - inspect_model_parameters_by_path()- inspect_model_parameters_by_path(self, path, *, parameters: 'Union[list, set, tuple, str]' = None) (inherited)
- Inspect and extract parameters from a model component specified by its path. - Parameters:- path: str required
- The path relative to the Models.Core.Simulations Node 
- parameters: Union[str, set, list, tuple], optional
- A specific parameter or a collection of parameters to inspect. Defaults to - 'all', in which case all accessible attributes are returned. For layered models like Solute, valid parameters include- Depth,- InitialValues,- SoluteBD,- Thickness, etc.
- kwargs:
- Reserved for future compatibility; currently unused. 
 - Returns- Union[dict, list, pd.DataFrame, Any] The format depends on the model type as shown below: - Weather:
- file path(s) as string(s) 
- Clock:
- dictionary with start and end datetime objects (or a single datetime if only one is requested). 
- Manager:
- dictionary of script parameters. 
- Soil-related:
- pandas DataFrame of layered values. 
- Report:
- A dictionary with - VariableNamesand- EventNames.
 - Cultivar: dictionary of parameter strings. - Raises- ValueError
- If the specified model or simulation is not found or arguments are invalid. 
- NotImplementedError
- If the model type is unsupported by the current interface. 
 - Requirements- APSIM Next Generation Python bindings ( - apsimNGpy)
- Python 3.10+ 
 
 - See also - Related API: - inspect_model_parameters()Others:- inspect_model(),- inspect_file()- edit_cultivar(self, *, CultivarName: 'str', commands: 'str', values: 'Any', **kwargs) (inherited)
 - @deprecated Edits the parameters of a given cultivar. we don’t need a simulation name for this unless if you are defining it in the manager section, if that it is the case, see update_mgt. - Requires:
- required a replacement for the crops 
 - Args: - CultivarName (str, required): Name of the cultivar (e.g., ‘laila’). 
- variable_spec (str, required): A strings representing the parameter paths to be edited. 
 - Returns: instance of the class CoreModel or ApsimModel - Example: - ('[Grain].MaximumGrainsPerCob.FixedValue', '[Phenology].GrainFilling.Target.FixedValue') - values: values for each command (e.g., (721, 760)). - update_cultivar(self, *, parameters: 'dict', simulations: 'Union[list, tuple]' = None, clear=False, **kwargs) (inherited)
 - Update cultivar parameters - parameters: (dict, required)
- dictionary of cultivar parameters to update. 
- simulationsstr optional
- List or tuples of simulation names to update if - Noneupdate all simulations.
- clear (bool, optional)
- If - Trueremove all existing parameters, by default- False.
 - recompile_edited_model(self, out_path: 'os.PathLike') (inherited)
 - Args:- out_path: os.PathLike object this method is called to convert the simulation object from ConverterReturnType to model like object- return:self- update_mgt_by_path(self, *, path: 'str', fmt='.', **kwargs) (inherited)
 - Parameters- path: str
- A complete node path to the script manager e.g. ‘.Simulations.Simulation.Field.Sow using a variable rule’ 
- fmt: str
- seperator for formatting the path e.g., “.”. Other characters can be used with caution, e.g., / and clearly declared in fmt argument. If you want to use the forward slash, it will be ‘/Simulations/Simulation/Field/Sow using a variable rule’, fmt = ‘/’ 
- **kwargs:
- Corresponding keyword arguments representing the paramters in the script manager and their values. Values is what you want to change to; Example here - Population=8.2, values should be entered with their corresponding data types e.g., int, float, bool,str etc.
 - Returns:- Instance of apsimNgpy.core.ApsimModel or apsimNgpy.core.experimentmanager.ExperimentManager - replace_model_from(self, model, model_type: 'str', model_name: 'str' = None, target_model_name: 'str' = None, simulations: 'str' = None) (inherited)
 - @deprecated and will be removed function has not been maintained for a long time, use it at your own risk - Replace a model, e.g., a soil model with another soil model from another APSIM model. The method assumes that the model to replace is already loaded in the current model and the same class as a source model. e.g., a soil node to soil node, clock node to clock node, et.c - Parameters:- model: Path to the APSIM model file or a CoreModel instance. - model_type: (str):
- Class name (as string) of the model to replace (e.g., “Soil”). 
- model_name: (str, optional)
- Name of the model instance to copy from the source model. If not provided, the first match is used. 
- target_model_name: (str, optional)
- Specific simulation name to target for replacement. Only used when replacing Simulation-level objects. 
- simulations (str, optional):
- Simulation(s) to operate on. If None, applies to all. 
 - Returns:
- self: To allow method chaining. 
- Raises:
- ValueError: If- model_classis “Simulations” which is not allowed for replacement.
 - update_mgt(self, *, management: 'Union[dict, tuple]', simulations: '[list, tuple]' = <UserOptionMissing>, out: '[Path, str]' = None, reload: 'bool' = True, **kwargs) (inherited)
 - Update management settings in the model. This method handles one management parameter at a time. - Parameters- management: dict or tuple
- A dictionary or tuple of management parameters to update. The dictionary should have ‘Name’ as the key for the management script’s name and corresponding values to update. Lists are not allowed as they are mutable and may cause issues with parallel processing. If a tuple is provided, it should be in the form (param_name, param_value). 
- simulations: list of str, optional
- List of simulation names to update. If - None, updates all simulations. This is not recommended for large numbers of simulations as it may result in a high computational load.
- out: str or pathlike, optional
- Path to save the edited model. If - None, uses the default output path specified in- self.out_pathor- self.model_info.path. No need to call- save_edited_fileafter updating, as this method handles saving.
 - Returns- Returns the instance of the respective model class for method chaining. - ..note: - Ensure that the `management` parameter is provided in the correct format to avoid errors. - This method does not perform `validation` on the provided `management` dictionary beyond checking for key existence. - If the specified management script or parameters do not exist, they will be ignored. - preview_simulation(self, watch=False) (inherited)
 - Open the current simulation in the APSIM Next Gen GUI. - This first saves the in-memory simulation to - out_pathand then launches the APSIM Next Gen GUI (via- get_apsim_bin_path()) so you can inspect the model tree and make quick edits side by side.- Parameters- watchbool, default False
- If True, Python will listen for GUI edits and sync them back into the model instance in (near) real time. This feature is experimental. 
 - Returns- None
- This function performs a side effect (opening the GUI) and does not return a value. 
 - Raises- FileNotFoundError
- If the file does not exist after - save().
- RuntimeError
- If the APSIM Next Gen executable cannot be located or the GUI fails to start. 
 - Tip - The file opened in the GUI is a saved copy of this Python object. Changes made in the GUI are not propagated back to the - ApsimModelinstance unless you set- watch=True. Otherwise, to continue working in Python with GUI edits, save the file in APSIM and re-load it, for example:- ApsimModel("gui_edited_file_path.apsimx") - Examples- 1. Preview only - from apsimNGpy.core.apsim import ApsimModel model = ApsimModel("Maize", out_path="test_.apsimx") model.preview_simulation()   - 2. Preview and edit simultaneously - After opening the APSIMX file in the GUI via the watching mode ( - watch=True), you can modify any parameters using GUI interface. The Example given below involved changing parameters such as Plant population (/m²), Cultivar to be sown, and Row spacing (mm) in the Sow using a variable rule script and finally, checked whether the changes were successful by inspecting the model.- model.preview_simulation(watch=True)   - Example console output when - watch=True:- 2025-10-24 13:05:08,480 - INFO - Watching for GUI edits... Save in APSIM to sync back. 2025-10-24 13:05:08,490 - INFO - Press Ctrl+C in this cell to stop. APSIM GUI saved. Syncing model... 2025-10-24 13:05:24,112 - INFO - Watching terminated successfully. - When - watch=True, follow the console instructions. One critical step is that you must press- Ctrl+Cto stop watching.- Checking if changes were successfully propagated back - model.inspect_model_parameters("Models.Manager", "Sow using a variable rule") - {'Crop': '[Maize]', 'StartDate': '1-nov', 'EndDate': '10-jan', 'MinESW': '100', 'MinRain': '25', 'RainDays': '7', 'CultivarName': 'B_95', 'SowingDepth': '25', 'RowSpacing': '700', 'Population': '4'}- Depending on your environment, you may need to close the GUI window to continue or follow the prompts shown after termination. - replace_met_file(self, *, weather_file: 'Union[Path, str]', simulations=<UserOptionMissing>, **kwargs) -> "'Self'" (inherited)
 - Deprecated since version 0.**x**: This helper will be removed in a future release. Prefer newer weather configuration utilities or set the - FileNameproperty on weather nodes directly.- Replace the - FileNameof every- Models.Climate.Weathernode under one or more simulations so they point to a new- .metfile.- This method traverses the APSIM NG model tree under each selected simulation and updates the weather component(s) in-place. Version-aware traversal is used: - If - APSIM_VERSION_NO > BASE_RELEASE_NOor- APSIM_VERSION_NO == GITHUB_RELEASE_NO: use- ModelTools.find_all_in_scope()to find- Models.Climate.Weathernodes.
- Otherwise: fall back to - sim.FindAllDescendants[Models.Climate.Weather]().
 - Parameters- weather_fileUnion[pathlib.Path, str]
- Path to the - .metfile. May be absolute or relative to the current working directory. The path must exist at call time; otherwise a- FileNotFoundErroris raised.
- simulationsAny, optional
- Simulation selector forwarded to - find_simulations(). If left as- MissingOption(default) (or if your implementation accepts- None), all simulations yielded by- find_simulations()are updated. Acceptable types depend on your- find_simulations()contract (e.g., iterable of names, single name, or sentinel).
- **kwargs
- Ignored. Reserved for backward compatibility and future extensions. 
 - Returns- Self
- The current model/manager instance to support method chaining. 
 - Raises- FileNotFoundError
- If - weather_filedoes not exist.
- Exception
- Any exception raised by - find_simulations()or underlying APSIM traversal utilities is propagated unchanged.
 - Side Effects- Mutates the model by setting - met.FileName = os.path.realpath(weather_file)for each matched- Models.Climate.Weathernode.- Notes- No-op safety: If a simulation has no Weather nodes, that simulation is silently skipped. 
- Path normalization: The stored path is the canonical real path ( - os.path.realpath).
- Thread/process safety: This operation mutates in-memory model state and is not inherently thread-safe. Coordinate external synchronization if calling concurrently. 
 - Examples- Update all simulations to use a local - Ames.met:- model.replace_met_file(weather_file="data/weather/Ames.met") - Update only selected simulations: - model.replace_met_file( weather_file=Path("~/wx/Boone.met").expanduser(), simulations=("Sim_A", "Sim_B") ) - See Also- find_simulations : Resolve and yield simulation objects by name/selector. ModelTools.find_all_in_scope : Scope-aware traversal utility. Models.Climate.Weather : APSIM NG weather component. - get_weather_from_file(self, weather_file, simulations=None)
 - Point targeted APSIM Weather nodes to a local - .metfile.- The function name mirrors the semantics of - get_weather_from_webbut sources the weather from disk. If the provided path lacks the- .metsuffix, it is appended. The file must exist on disk.- Parameters- weather_file: str | Path
- Path (absolute or relative) to a - .metfile. If the suffix is missing,- .metis appended. A- FileNotFoundErroris raised if the final path does not exist. The path is resolved to an absolute path to avoid ambiguity.
- simulations: None | str | Iterable[str], optional
- Which simulations to update: - - None(default): update all Weather nodes found under- Simulations. -- stror iterable of names: only update Weather nodes within the named- simulation(s). A - ValueErroris raised if a requested simulation has no Weather nodes.
 - Returns- Instance of the model for method chaining - Raises- FileNotFoundError
- If the resolved - .metfile does not exist.
- ValueError
- If any requested simulation exists but contains no Weather nodes. 
 - Side Effects- Sets - w.FileNamefor each targeted- Models.Climate.Weathernode to the resolved path of- weather_file. The file is not copied; only the path inside the APSIM document is changed.- Notes- APSIM resolves relative paths relative to the - .apsimxfile. Using an absolute path (the default here) reduces surprises across working directories.
- Replacement folders that contain Weather nodes are also updated when - simulationsis- None(i.e., “update everything in scope”).
 - Examples- Update all Weather nodes: - from apsimNGpy.core.apsim import ApsimModel model = ApsimModel("Maize") model.get_weather_from_file("data/ames_2020.met") - Update only two simulations (suffix added automatically): - model.get_weather_from_file("data/ames_2020", simulations=("Simulation",)) - See also - Related APIs: - edit_model()and- edit_model_by_path().- get_weather_from_web(self, lonlat: 'tuple', start: 'int', end: 'int', simulations=<UserOptionMissing>, source='nasa', filename=None) (inherited)
- Replaces the weather (met) file in the model using weather data fetched from an online source. Internally, calls get_weather_from_file after downloading the weather 
 - Parameters:- lonlat: tuple
- A tuple containing the longitude and latitude coordinates. 
- start: int
- Start date for the weather data retrieval. 
- end: int
- End date for the weather data retrieval. 
- simulations: str | list[str] default is all or None list of simulations or a singular simulation
- name, where to place the weather data, defaults to None, implying - allthe available simulations
- source: str default is ‘nasa’
- Source of the weather data. 
- filename: str default is generated using the base name of the apsimx file in use, and the start and
- end years Name of the file to save the retrieved data. If None, a default name is generated. 
- Returns:
- model object with the corresponding file replaced with the fetched weather data. 
 - Examples- >>> from apsimNGpy.core.apsim import ApsimModel >>> model = ApsimModel(model= "Maize") >>> model.get_weather_from_web(lonlat = (-93.885490, 42.060650), start = 1990, end = 2001) - Changing weather data with non-matching start and end dates in the simulation will lead to RuntimeErrors. To avoid this, first check the start and end date before proceeding as follows: - >>> dt = model.inspect_model_parameters(model_class='Clock', model_name='Clock', simulations='Simulation') >>> start, end = dt['Start'].year, dt['End'].year # output: 1990, 2000 - show_met_file_in_simulation(self, simulations: 'list' = None) (inherited)
 - Show weather file for all simulations - @deprecated: use inspect_model_parameters() instead - change_report(self, *, command: 'str', report_name='Report', simulations=None, set_DayAfterLastOutput=None, **kwargs) (inherited)
- Set APSIM report _variables for specified simulations. 
 - This function allows you to set the variable names for an APSIM report in one or more simulations. - Parameters- command: str
- The new report string that contains variable names. 
- report_name: str
- The name of the APSIM report to update defaults to Report. 
- simulations: list of str, optional
- A list of simulation names to update. If - None, the function will update the report for all simulations.
 - Returns- None - extract_soil_physical(self, simulations: '[tuple, list]' = None) (inherited)
 - Find physical soil - Parameters- simulation, optional
- Simulation name, if - Noneuse the first simulation.
 - Returns- APSIM Models.Soils.Physical object - extract_any_soil_physical(self, parameter, simulations: '[list, tuple]' = <UserOptionMissing>) (inherited)
 - Extracts soil physical parameters in the simulation - Args::
- parameter(_string_): string e.g. DUL, SAT- simulations(string, optional): Targeted simulation name. Defaults to None.
 - inspect_model(self, model_type: 'Union[str, Models]', fullpath=True, **kwargs) (inherited)
 - Inspect the model types and returns the model paths or names. - When is it needed?- useful if you want to identify the paths or name of the model for further editing the model e.g., with the - in edit_modelmethod.- Parameters- model_classtype | str
- The APSIM model type to search for. You may pass either a class (e.g., Models.Clock, Models.Manager) or a string. Strings can be short names (e.g., “Clock”, “Manager”) or fully qualified (e.g., “Models.Core.Simulation”, “Models.Climate.Weather”, “Models.Core.IPlant”). Please see from The list of classes or model types from the Models Namespace below. Red represents the modules, and this method - will throw an error if only a module is supplied. The list constitutes the classes or model types under each module - Models:
- Models.Clock 
- Models.Fertiliser 
- Models.Irrigation 
- Models.Manager 
- Models.Memo 
- Models.MicroClimate 
- Models.Operations 
- Models.Report 
- Models.Summary 
 
- Models.Climate:
- Models.Climate.Weather 
 
- Models.Core:
- Models.Core.Folder 
- Models.Core.Simulation 
- Models.Core.Simulations 
- Models.Core.Zone 
 
- Models.Factorial:
- Models.Factorial.Experiment 
- Models.Factorial.Factors 
- Models.Factorial.Permutation 
 
- Models.PMF:
- Models.PMF.Cultivar 
- Models.PMF.Plant 
 
- Models.Soils:
- Models.Soils.Arbitrator.SoilArbitrator 
- Models.Soils.CERESSoilTemperature 
- Models.Soils.Chemical 
- Models.Soils.Nutrients.Nutrient 
- Models.Soils.Organic 
- Models.Soils.Physical 
- Models.Soils.Sample 
- Models.Soils.Soil 
- Models.Soils.SoilCrop 
- Models.Soils.Solute 
- Models.Soils.Water 
 
- Models.Storage:
- Models.Storage.DataStore 
 
- Models.Surface:
- Models.Surface.SurfaceOrganicMatter 
 
- Models.WaterModel:
- Models.WaterModel.WaterBalance 
 
 
- fullpathbool, optional (default: False)
- If False, return the model name only. If True, return the model’s full path relative to the Simulations root. 
 - Returns- list[str]
- A list of model names or full paths, depending on - fullpath.
 - Examples: - from apsimNGpy.core.apsim import ApsimModel from apsimNGpy.core.core import Models - load default - maizemodule:- model = ApsimModel('Maize') - Find the path to all the manager scripts in the simulation: - model.inspect_model(Models.Manager, fullpath=True) [.Simulations.Simulation.Field.Sow using a variable rule', '.Simulations.Simulation.Field.Fertilise at sowing', '.Simulations.Simulation.Field.Harvest'] - Inspect the full path of the Clock Model: - model.inspect_model(Models.Clock) # gets the path to the Clock models ['.Simulations.Simulation.Clock'] - Inspect the full path to the crop plants in the simulation: - model.inspect_model(Models.Core.IPlant) # gets the path to the crop model ['.Simulations.Simulation.Field.Maize'] - Or use the full string path as follows: - model.inspect_model(Models.Core.IPlant, fullpath=False) # gets you the name of the crop Models ['Maize'] - Get the full path to the fertilizer model: - model.inspect_model(Models.Fertiliser, fullpath=True) ['.Simulations.Simulation.Field.Fertiliser'] - The models from APSIM Models namespace are abstracted to use strings. All you need is to specify the name or the full path to the model enclosed in a stirng as follows: - model.inspect_model('Clock') # get the path to the clock model ['.Simulations.Simulation.Clock'] - Alternatively, you can do the following: - model.inspect_model('Models.Clock') ['.Simulations.Simulation.Clock'] - Repeat inspection of the plant model while using a - string:- model.inspect_model('IPlant') ['.Simulations.Simulation.Field.Maize'] - Inspect using the full model namespace path: - model.inspect_model('Models.Core.IPlant') - What about the weather model?: - model.inspect_model('Weather') # inspects the weather module ['.Simulations.Simulation.Weather'] - Alternative: - # or inspect using full model namespace path model.inspect_model('Models.Climate.Weather') ['.Simulations.Simulation.Weather'] - Try finding the path to the cultivar model: - model.inspect_model('Cultivar', fullpath=False) # list all available cultivar names ['Hycorn_53', 'Pioneer_33M54', 'Pioneer_38H20','Pioneer_34K77', 'Pioneer_39V43','Atrium', 'Laila', 'GH_5019WX'] - # we can get only the names of the cultivar models using the full string path: - model.inspect_model('Models.PMF.Cultivar', fullpath = False) ['Hycorn_53','Pioneer_33M54', 'Pioneer_38H20','Pioneer_34K77', 'Pioneer_39V43','Atrium', 'Laila', 'GH_5019WX'] - Tip - Models can be inspected either by importing the Models namespace or by using string paths. The most reliable
- approach is to provide the full model path—either as a string or as the - Modelsobject.
- However, remembering full paths can be tedious, so allowing partial model names or references can significantly
- save time during development and exploration. 
 - Note - You do not need to import - Modelsif you pass a string; both short and fully qualified names are supported.
- “Full path” is the APSIM tree path relative to the Simulations node (be mindful of the difference between Simulations (root) and an individual Simulation). 
 - See also - Related APIs: - inspect_file(),- inspect_model_parameters(),- inspect_model_parameters_by_path()- property configs(inherited)
 - records activities or modifications to the model including changes to the file - replace_soils_values_by_path(self, node_path: 'str', indices: 'list' = None, **kwargs) (inherited)
 - set the new values of the specified soil object by path. only layers parameters are supported. - Unfortunately, it handles one soil child at a time e.g., - Physicalat a go- Parameters:- node_path: (str, required):
- complete path to the soil child of the Simulations e.g.,Simulations.Simulation.Field.Soil.Organic. Use`copy path to node function in the GUI to get the real path of the soil node. 
- indices: (list, optional)
- defaults to none but could be the position of the replacement values for arrays 
- **kwargs: (key word arguments)
- This carries the parameter and the values e.g., BD = 1.23 or BD = [1.23, 1.75] if the child is - Physical, or- Carbonif the child is- Organic- raises: `ValueError if none of the key word arguments, representing the paramters are specified - returns:
- Instance of the model object 
 
 - Example: - from apsimNGpy.core.base_data import load_default_simulations model = load_default_simulations(crop ='Maize', simulations_object=False) # initiate model. model = CoreModel(model) # ``replace`` with your intended file path model.replace_soils_values_by_path(node_path='.Simulations.Simulation.Field.Soil.Organic', indices=[0], Carbon =1.3) sv= model.get_soil_values_by_path('.Simulations.Simulation.Field.Soil.Organic', 'Carbon') output # {'Carbon': [1.3, 0.96, 0.6, 0.3, 0.18, 0.12, 0.12]} 
 - replace_soil_property_values(self, *, parameter: 'str', param_values: 'list', soil_child: 'str', simulations: 'list' = <UserOptionMissing>, indices: 'list' = None, crop=None, **kwargs) (inherited)
 - Replaces values in any soil property array. The soil property array. - parameter: str: parameter name e.g., NO3, ‘BD’- param_values: list or tuple: values of the specified soil property name to replace- soil_child: str: sub child of the soil component e.g., organic, physical etc.- simulations: list: list of simulations to where the child is found if
- not found, all current simulations will receive the new values, thus defaults to None 
 - indices: list. Positions in the array which will be replaced. Please note that unlike C#, python satrt counting from 0- crop(str, optional): string for soil water replacement. Default is None- clean_up(self, db=True, verbose=False, coerce=True, csv=True) (inherited)
 - Clears the file cloned the datastore and associated csv files are not deleted if db is set to False defaults to True. - Returns:
- >>None: This method does not return a value. 
 - Caution - Please proceed with caution, we assume that if you want to clear the model objects, then you don’t need them, but by making copy compulsory, then, we are clearing the edited files - create_experiment(self, permutation: 'bool' = True, base_name: 'str' = None, **kwargs) (inherited)
- @deprecated and will be removed in future versions for this class. 
 - Initialize an - ExperimentManagerinstance, adding the necessary models and factors.- Args: - kwargs: Additional parameters for CoreModel.- permutation(bool). If True, the experiment uses a permutation node to run unique combinations of the specified factors for the simulation. For example, if planting population and nitrogen fertilizers are provided, each combination of planting population level and fertilizer amount is run as an individual treatment.- base_name(str, optional): The name of the base simulation to be moved into the experiment setup. if not
- provided, it is expected to be Simulation as the default. 
 - Warning - base_nameis optional but the experiment may not be created if there are more than one base simulations. Therefore, an error is likely.- refresh_model(self) (inherited)
 - for methods that will alter the simulation objects and need refreshing the second time we call @return: self for method chaining - add_fac(self, model_type, parameter, model_name, values, factor_name=None) (inherited)
 - Add a factor to the initiated experiment. This should replace add_factor. which has less abstractionn @param model_type: model_class from APSIM Models namespace @param parameter: name of the parameter to fill e.g CNR @param model_name: name of the model @param values: values of the parameter, could be an iterable for case of categorical variables or a string e.g, ‘0 to 100 step 10 same as [0, 10, 20, 30, …]. @param factor_name: name to identify the factor in question @return: - set_continuous_factor(self, factor_path, lower_bound, upper_bound, interval, factor_name=None) (inherited)
 - Wraps around - add_factorto add a continuous factor, just for clarity- Args:
- factor_path: (str): The path of the factor definition relative to its child node,
- e.g., - "[Fertilise at sowing].Script.Amount".
 - factor_name: (str): The name of the factor.- lower_bound: (int or float): The lower bound of the factor.- upper_bound: (int or float): The upper bound of the factor.- interval: (int or float): The distance between the factor levels.
- Returns:
- ApsimModelor- CoreModel: An instance of- apsimNGpy.core.core.apsim.ApsimModelor- CoreModel.
 - Example: - from apsimNGpy.core import base_data apsim = base_data.load_default_simulations(crop='Maize') apsim.create_experiment(permutation=False) apsim.set_continuous_factor(factor_path = "[Fertilise at sowing].Script.Amount", lower_bound=100, upper_bound=300, interval=10) - set_categorical_factor(self, factor_path: 'str', categories: 'Union[list, tuple]', factor_name: 'str' = None) (inherited)
 - wraps around - add_factor()to add a continuous factor, just for clarity.- factor_path: (str, required): path of the factor definition relative to its child node “[Fertilise at sowing].Script.Amount”- factor_name: (str) name of the factor.- categories: (tuple, list, required): multiple values of a factor- returns:
- ApsimModelor- CoreModel: An instance of- apsimNGpy.core.core.apsim.ApsimModelor- CoreModel.
 - Example: - from apsimNGpy.core import base_data apsim = base_data.load_default_simulations(crop='Maize') apsim.create_experiment(permutation=False) apsim.set_continuous_factor(factor_path = "[Fertilise at sowing].Script.Amount", lower_bound=100, upper_bound=300, interval=10) - add_crop_replacements(self, _crop: 'str') (inherited)
 - Adds a replacement folder as a child of the simulations. - Useful when you intend to edit cultivar parameters. - Args:
- _crop(str): Name of the crop to be added to the replacement folder.
- Returns:
- ApsimModel: An instance of - apsimNGpy.core.core.apsim.ApsimModelor- CoreModel.
 
- Raises:
- ValueError: If the specified crop is not found. 
 
 - get_model_paths(self, cultivar=False)
 - Select out a few model types to use for building the APSIM file inspections - inspect_file(self, *, cultivar=False, console=True, **kwargs) (inherited)
 - Inspects the file by traversing the entire simulation tree, using - inspect_model()under the hood- This method is important in inspecting the - whole fileand also getting the- scripts paths.- Parameters- cultivar: (bool)
- To include cultivar paths. 
- console: (bool)
- Prints to the console if True 
 - Examples- from apsimNGpy.core.apsim import ApsimModel model = ApsimModel('Maize') model.inspect_file(cultivar=False) - # output - ── Simulations: .Simulations ├── DataStore: .Simulations.DataStore └── Simulation: .Simulations.Simulation ├── Clock: .Simulations.Simulation.Clock ├── Field: .Simulations.Simulation.Field │ ├── Fertilise at sowing: .Simulations.Simulation.Field.Fertilise at sowing │ ├── Fertiliser: .Simulations.Simulation.Field.Fertiliser │ ├── Harvest: .Simulations.Simulation.Field.Harvest │ ├── Maize: .Simulations.Simulation.Field.Maize │ ├── Report: .Simulations.Simulation.Field.Report │ ├── Soil: .Simulations.Simulation.Field.Soil │ │ ├── Chemical: .Simulations.Simulation.Field.Soil.Chemical │ │ ├── NH4: .Simulations.Simulation.Field.Soil.NH4 │ │ ├── NO3: .Simulations.Simulation.Field.Soil.NO3 │ │ ├── Organic: .Simulations.Simulation.Field.Soil.Organic │ │ ├── Physical: .Simulations.Simulation.Field.Soil.Physical │ │ │ └── MaizeSoil: .Simulations.Simulation.Field.Soil.Physical.MaizeSoil │ │ ├── Urea: .Simulations.Simulation.Field.Soil.Urea │ │ └── Water: .Simulations.Simulation.Field.Soil.Water │ ├── Sow using a variable rule: .Simulations.Simulation.Field.Sow using a variable rule │ └── SurfaceOrganicMatter: .Simulations.Simulation.Field.SurfaceOrganicMatter ├── Graph: .Simulations.Simulation.Graph │ └── Series: .Simulations.Simulation.Graph.Series ├── MicroClimate: .Simulations.Simulation.MicroClimate ├── SoilArbitrator: .Simulations.Simulation.SoilArbitrator ├── Summary: .Simulations.Simulation.Summary └── Weather: .Simulations.Simulation.Weather- Turn cultivar paths on as follows: - model.inspect_file(cultivar=True) - # output - └── Simulations: .Simulations ├── DataStore: .Simulations.DataStore └── Simulation: .Simulations.Simulation ├── Clock: .Simulations.Simulation.Clock ├── Field: .Simulations.Simulation.Field │ ├── Fertilise at sowing: .Simulations.Simulation.Field.Fertilise at sowing │ ├── Fertiliser: .Simulations.Simulation.Field.Fertiliser │ ├── Harvest: .Simulations.Simulation.Field.Harvest │ ├── Maize: .Simulations.Simulation.Field.Maize │ │ └── CultivarFolder: .Simulations.Simulation.Field.Maize.CultivarFolder │ │ ├── Atrium: .Simulations.Simulation.Field.Maize.CultivarFolder.Atrium │ │ ├── CG4141: .Simulations.Simulation.Field.Maize.CultivarFolder.CG4141 │ │ ├── Dekalb_XL82: .Simulations.Simulation.Field.Maize.CultivarFolder.Dekalb_XL82 │ │ ├── GH_5009: .Simulations.Simulation.Field.Maize.CultivarFolder.GH_5009 │ │ ├── GH_5019WX: .Simulations.Simulation.Field.Maize.CultivarFolder.GH_5019WX │ │ ├── Generic: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic │ │ │ ├── A_100: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_100 │ │ │ ├── A_103: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_103 │ │ │ ├── A_105: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_105 │ │ │ ├── A_108: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_108 │ │ │ ├── A_110: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_110 │ │ │ ├── A_112: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_112 │ │ │ ├── A_115: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_115 │ │ │ ├── A_120: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_120 │ │ │ ├── A_130: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_130 │ │ │ ├── A_80: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_80 │ │ │ ├── A_90: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_90 │ │ │ ├── A_95: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.A_95 │ │ │ ├── B_100: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_100 │ │ │ ├── B_103: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_103 │ │ │ ├── B_105: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_105 │ │ │ ├── B_108: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_108 │ │ │ ├── B_110: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_110 │ │ │ ├── B_112: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_112 │ │ │ ├── B_115: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_115 │ │ │ ├── B_120: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_120 │ │ │ ├── B_130: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_130 │ │ │ ├── B_80: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_80 │ │ │ ├── B_90: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_90 │ │ │ ├── B_95: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.B_95 │ │ │ ├── HY_110: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.HY_110 │ │ │ ├── LY_110: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.LY_110 │ │ │ └── P1197: .Simulations.Simulation.Field.Maize.CultivarFolder.Generic.P1197 │ │ ├── Hycorn_40: .Simulations.Simulation.Field.Maize.CultivarFolder.Hycorn_40 │ │ ├── Hycorn_53: .Simulations.Simulation.Field.Maize.CultivarFolder.Hycorn_53 │ │ ├── Katumani: .Simulations.Simulation.Field.Maize.CultivarFolder.Katumani │ │ ├── Laila: .Simulations.Simulation.Field.Maize.CultivarFolder.Laila │ │ ├── Makueni: .Simulations.Simulation.Field.Maize.CultivarFolder.Makueni │ │ ├── Melkassa: .Simulations.Simulation.Field.Maize.CultivarFolder.Melkassa │ │ ├── NSCM_41: .Simulations.Simulation.Field.Maize.CultivarFolder.NSCM_41 │ │ ├── Pioneer_3153: .Simulations.Simulation.Field.Maize.CultivarFolder.Pioneer_3153 │ │ ├── Pioneer_33M54: .Simulations.Simulation.Field.Maize.CultivarFolder.Pioneer_33M54 │ │ ├── Pioneer_34K77: .Simulations.Simulation.Field.Maize.CultivarFolder.Pioneer_34K77 │ │ ├── Pioneer_38H20: .Simulations.Simulation.Field.Maize.CultivarFolder.Pioneer_38H20 │ │ ├── Pioneer_39G12: .Simulations.Simulation.Field.Maize.CultivarFolder.Pioneer_39G12 │ │ ├── Pioneer_39V43: .Simulations.Simulation.Field.Maize.CultivarFolder.Pioneer_39V43 │ │ ├── malawi_local: .Simulations.Simulation.Field.Maize.CultivarFolder.malawi_local │ │ ├── mh12: .Simulations.Simulation.Field.Maize.CultivarFolder.mh12 │ │ ├── mh16: .Simulations.Simulation.Field.Maize.CultivarFolder.mh16 │ │ ├── mh17: .Simulations.Simulation.Field.Maize.CultivarFolder.mh17 │ │ ├── mh18: .Simulations.Simulation.Field.Maize.CultivarFolder.mh18 │ │ ├── mh19: .Simulations.Simulation.Field.Maize.CultivarFolder.mh19 │ │ ├── r201: .Simulations.Simulation.Field.Maize.CultivarFolder.r201 │ │ ├── r215: .Simulations.Simulation.Field.Maize.CultivarFolder.r215 │ │ ├── sc401: .Simulations.Simulation.Field.Maize.CultivarFolder.sc401 │ │ ├── sc501: .Simulations.Simulation.Field.Maize.CultivarFolder.sc501 │ │ ├── sc601: .Simulations.Simulation.Field.Maize.CultivarFolder.sc601 │ │ ├── sc623: .Simulations.Simulation.Field.Maize.CultivarFolder.sc623 │ │ ├── sc625: .Simulations.Simulation.Field.Maize.CultivarFolder.sc625 │ │ └── sr52: .Simulations.Simulation.Field.Maize.CultivarFolder.sr52 │ ├── Report: .Simulations.Simulation.Field.Report │ ├── Soil: .Simulations.Simulation.Field.Soil │ │ ├── Chemical: .Simulations.Simulation.Field.Soil.Chemical │ │ ├── NH4: .Simulations.Simulation.Field.Soil.NH4 │ │ ├── NO3: .Simulations.Simulation.Field.Soil.NO3 │ │ ├── Organic: .Simulations.Simulation.Field.Soil.Organic │ │ ├── Physical: .Simulations.Simulation.Field.Soil.Physical │ │ │ └── MaizeSoil: .Simulations.Simulation.Field.Soil.Physical.MaizeSoil │ │ ├── Urea: .Simulations.Simulation.Field.Soil.Urea │ │ └── Water: .Simulations.Simulation.Field.Soil.Water │ ├── Sow using a variable rule: .Simulations.Simulation.Field.Sow using a variable rule │ └── SurfaceOrganicMatter: .Simulations.Simulation.Field.SurfaceOrganicMatter ├── Graph: .Simulations.Simulation.Graph │ └── Series: .Simulations.Simulation.Graph.Series ├── MicroClimate: .Simulations.Simulation.MicroClimate ├── SoilArbitrator: .Simulations.Simulation.SoilArbitrator ├── Summary: .Simulations.Simulation.Summary └── Weather: .Simulations.Simulation.Weather- See also - Related APIs: - inspect_model(),- inspect_model_parameters()
 - summarize_numeric(self, data_table: 'Union[str, tuple, list]' = None, columns: 'list' = None, percentiles=(0.25, 0.5, 0.75), round=2)
 - Summarize numeric columns in a simulated pandas DataFrame. Useful when you want to quickly look at the simulated data - Parameters: - data_table (list, tuple, str): The names of the data table attached to the simulations. defaults to all data tables. 
- specific (list) columns to summarize. 
- percentiles (tuple): Optional percentiles to include in the summary. 
- round (int): number of decimal places for rounding off. 
 - Returns: - pd.DataFrame: A summary DataFrame with statistics for each numeric column. - add_db_table(self, variable_spec: 'list' = None, set_event_names: 'list' = None, rename: 'str' = None, simulation_name: 'Union[str, list, tuple]' = <UserOptionMissing>) (inherited)
- Adds a new database table, which - APSIMcalls- Report(Models.Report) to the- Simulationunder a Simulation Zone.- This is different from - add_report_variablein that it creates a new, named report table that collects data based on a given list of _variables and events. actu- Parameters:- variable_spec: (list or str)
- A list of APSIM variable paths to include in the report table. If a string is passed, it will be converted to a list. 
- set_event_names: (list or str, optional):
- A list of APSIM events that trigger the recording of _variables.
- Defaults to [‘[Clock].EndOfYear’] if not provided. other examples include ‘[Clock].StartOfYear’, ‘[Clock].EndOfsimulation’, ‘[crop_name].Harvesting’ etc. 
 
 - rename: (str): The name of the report table to be added. Defaults to ‘my_table’. - simulation_name: (str,tuple, or list, Optional)
- if specified, the name of the simulation will be searched and will become the parent candidate for the report table. If it is none, all Simulations in the file will be updated with the new db_table 
 - Raises:- ValueError: If no variable_spec is provided.- RuntimeError: If no Zone is found in the current simulation scope.- Examples: - from apsimNGpy.core.apsim import ApsimModel model = ApsimModel('Maize') model.add_db_table(variable_spec=['[Clock].Today', '[Soil].Nutrient.TotalC[1]/1000 as SOC1'], rename='report2') model.add_db_table(variable_spec=['[Clock].Today', '[Soil].Nutrient.TotalC[1]/1000 as SOC1', '[Maize].Grain.Total.Wt*10 as Yield'], rename='report2', set_event_names=['[Maize].Harvesting','[Clock].EndOfYear' ]) 
 - See also - Related APIs: - remove_report_variables()and- add_report_variables().- Datastore(inherited)
 - Default: - <member 'Datastore' of 'CoreModel' objects>- End(inherited)
 - Default: - <member 'End' of 'CoreModel' objects>- Models(inherited)
 - Default: - <member 'Models' of 'CoreModel' objects>- Simulations(inherited)
 - Default: - <member 'Simulations' of 'CoreModel' objects>- Start(inherited)
 - Default: - <member 'Start' of 'CoreModel' objects>- base_name(inherited)
 - Default: - <member 'base_name' of 'CoreModel' objects>- copy(inherited)
 - Default: - <member 'copy' of 'CoreModel' objects>- datastore(inherited)
 - Default: - <member 'datastore' of 'CoreModel' objects>- experiment(inherited)
 - Default: - <member 'experiment' of 'CoreModel' objects>- experiment_created(inherited)
 - Default: - <member 'experiment_created' of 'CoreModel' objects>- factor_names(inherited)
 - Default: - <member 'factor_names' of 'CoreModel' objects>- factors(inherited)
 - Default: - <member 'factors' of 'CoreModel' objects>- model(inherited)
 - Default: - <member 'model' of 'CoreModel' objects>- model_info(inherited)
 - Default: - <member 'model_info' of 'CoreModel' objects>- others(inherited)
 - Default: - <member 'others' of 'CoreModel' objects>- out(inherited)
 - Default: - <member 'out' of 'CoreModel' objects>- out_path(inherited)
 - Default: - <member 'out_path' of 'CoreModel' objects>- path(inherited)
 - Default: - <member 'path' of 'CoreModel' objects>- permutation(inherited)
 - Default: - <member 'permutation' of 'CoreModel' objects>- ran_ok(inherited)
 - Default: - <member 'ran_ok' of 'CoreModel' objects>- report_names(inherited)
 - Default: - <member 'report_names' of 'CoreModel' objects>- run_method(inherited)
 - Default: - <member 'run_method' of 'CoreModel' objects>- set_wd(inherited)
 - Default: - <member 'set_wd' of 'CoreModel' objects>- wk_info(inherited)
 - Default: - <member 'wk_info' of 'CoreModel' objects>- work_space(inherited)
 - Default: - <member 'work_space' of 'CoreModel' objects>- plot_mva(self, table: pandas.core.frame.DataFrame, time_col: Hashable, response: Hashable, *, expression: str = None, window: int = 5, min_period: int = 1, grouping: Hashable | collections.abc.Sequence[Hashable] | NoneType = None, preserve_start: bool = True, kind: str = 'line', estimator='mean', plot_raw: bool = False, raw_alpha: float = 0.35, raw_linewidth: float = 1.0, auto_datetime: bool = False, ylabel: str | None = None, return_data: bool = False, **kwargs)
 - Plot a centered moving-average (MVA) of a response using - seaborn.relplot.- Enhancements over a direct - relplotcall: - Computes and plots a smoothed series via- apsimNGpy.stats.data_insights.mva(). - Supports multi-column grouping; will auto-construct a composite hue if needed. - Optional overlay of the raw (unsmoothed) series for comparison. - Stable (mergesort) time ordering.- Parameters- tablepandas.DataFrame or str
- Data source or table name; if - None, use :pyattr:`results`.
- time_colhashable
- Time (x-axis) column. 
- responsehashable
- Response (y) column to smooth. 
- expression: str default is None
- simple mathematical expression to create new columns from existing columns 
- windowint, default=5
- MVA window size. 
- min_periodint, default=1
- Minimum periods for the rolling mean. 
- groupinghashable or sequence of hashable, optional
- One or more grouping columns. 
- preserve_startbool, default=True
- Preserve initial values when centering. 
- kind{“line”,”scatter”}, default=”line”
- Passed to - sns.relplot.
- estimatorstr or None, default=”mean”
- Passed to - sns.relplot(set to- Noneto plot raw observations).
- plot_rawbool, default=False
- Overlay the raw series on each facet. 
- raw_alphafloat, default=0.35
- Alpha for the raw overlay. 
- raw_linewidthfloat, default=1.0
- Line width for the raw overlay. 
- auto_datetimebool, default=False
- Attempt to convert - time_colto datetime.
- ylabelstr, optional
- Custom y-axis label; default is generated from window/response. 
- return_databool, default=False
- If - True, return- (FacetGrid, smoothed_df).
 - Returns- seaborn.FacetGrid
- The relplot grid, or - (grid, smoothed_df)if- return_data=True.
 - Notes- This function calls - seaborn.relplot()and accepts its keyword arguments via- **kwargs. See link below for details:- https://seaborn.pydata.org/generated/seaborn/relplot.html - boxplot(self, column, *, table=None, expression: str = None, by=None, figsize=(10, 8), grid=False, **kwargs) (inherited)
 - Plot a boxplot from simulation results using - pandas.DataFrame.boxplot.- Parameters- columnstr
- Column to plot. 
- tablestr or pandas.DataFrame, optional
- Table name or DataFrame; if omitted, use :pyattr:`results`. 
- bystr, optional
- Grouping column. 
 - figsize : tuple, default=(10, 8) grid : bool, default=False **kwargs - Forwarded to - pandas.DataFrame.boxplot().- Returns- matplotlib.axes.Axes - See also - Related APIs: - cat_plot().- distribution(self, x, *, table=None, expression: str = None, **kwargs) (inherited)
 - Plot a uni-variate distribution/histogram using - seaborn.histplot().- Parameters- xstr
- Numeric column to plot. 
- tablestr or pandas.DataFrame, optional
- Table name or DataFrame; if omitted, use :pyattr:`results`. 
- expression: str default is None
- simple mathematical expression to create new columns from existing columns 
- **kwargs
- Forwarded to - seaborn.histplot().
 - Raises- ValueError
- If - xis a string-typed column.
 - Notes- This function calls - seaborn.histplot()and accepts its keyword arguments via- **kwargs. See link below for details:- https://seaborn.pydata.org/generated/seaborn/histplot.html 
 - series_plot(self, table=None, expression: str = None, *, x: str = None, y: Union[str, list] = None, hue=None, size=None, style=None, units=None, weights=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, dashes=True, markers=None, style_order=None, estimator='mean', errorbar=('ci', 95), n_boot=1000, seed=None, orient='x', sort=True, err_style='band', err_kws=None, legend='auto', ci='deprecated', ax=None, **kwargs) (inherited)
 - Just a wrapper for seaborn.lineplot that supports multiple y columns that could be provided as a list - tablestr | [str] |None | None| pandas.DataFrame, optional. Default is None
- If the table names are provided, results are collected from the simulated data, using that table names. If None, results will be all the table names inside concatenated along the axis 0 (not recommended). 
 - expression: str default is None
- simple mathematical expression to create new columns from existing columns - If - yis a list of columns, the data are melted into long form and
 - the different series are colored by variable name. - **Kwargs
- Additional keyword args and all other arguments are for Seaborn.lineplot. See the reference below for all the kwargs. 
 - reference; https://seaborn.pydata.org/generated/seaborn.lineplot.html - Examples- >>> model.series_plot(x='Year', y='Yield', table='Report') >>> model.series_plot(x='Year', y=['SOC1', 'SOC2'], table='Report') - Examples:- >>> from apsimNGpy.core.apsim import ApsimModel >>> model = ApsimModel(model= 'Maize') # run the results >>> model.run(report_names='Report') >>>model.series_plot(x='Maize.Grain.Size', y='Yield', table='Report') >>>model.render_plot(show=True, ylabel = 'Maize yield', xlabel ='Maize grain size') - Plot two variables: - >>>model.series_plot(x=’Yield’, y=[‘Maize.Grain.N’, ‘Maize.Grain.Size’], table= ‘Report’) - Notes- This function calls - seaborn.lineplot()and accepts its keyword arguments via- **kwargs. See link below for detailed explanations:- https://seaborn.pydata.org/generated/seaborn/lineplot.html 
 - See also - Related APIs: - plot_mva().- scatter_plot(self, table=None, expression: str = None, *, x=None, y=None, hue=None, size=None, style=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, markers=True, style_order=None, legend='auto', ax=None, **kwargs) (inherited)
 - Scatter plot using - seaborn.scatterplot()with flexible aesthetic mappings.- Parameters- tablestr | [str] |None | None| pandas.DataFrame, optional. Default is None
- If the table names are provided, results are collected from the simulated data, using that table names. If None, results will be all the table names inside concatenated along the axis 0 (not recommended). 
- x, y, hue, size, style, palette, hue_order, hue_norm, sizes, size_order, size_norm, markers, style_order, legend, ax
- Passed through to - seaborn.scatterplot().
- expression: str default is None
- simple mathematical expression to create new columns from existing columns 
- ** Kwargs
- Additional keyword args for Seaborn. 
 - See the reference below for all the kwargs. reference; https://seaborn.pydata.org/generated/seaborn.scatterplot.html 
 - cat_plot(self, table=None, expression=None, *, x=None, y=None, hue=None, row=None, col=None, kind='strip', estimator='mean', errorbar=('ci', 95), n_boot=1000, seed=None, units=None, weights=None, order=None, hue_order=None, row_order=None, col_order=None, col_wrap=None, height=5, aspect=1, log_scale=None, native_scale=False, formatter=None, orient=None, color=None, palette=None, hue_norm=None, legend='auto', legend_out=True, sharex=True, sharey=True, margin_titles=False, facet_kws=None, **kwargs) (inherited)
- Categorical plot wrapper over - seaborn.catplot().
 - Parameters- table : str or pandas.DataFrame, optional - expression: str default is None
- simple mathematical expression to create new columns from existing columns 
 - x, y, hue, row, col, kind, estimator, errorbar, n_boot, seed, units, weights, order, hue_order, row_order, col_order, col_wrap, height, aspect, log_scale, native_scale, formatter, orient, color, palette, hue_norm, legend, legend_out, sharex, sharey, margin_titles, facet_kws - Passed through to - seaborn.catplot().- **kwargs
- Additional keyword args for Seaborn. 
 - Returns- seaborn.axisgrid.FacetGrid - reference https://seaborn.pydata.org/generated/seaborn.catplot.html - Related APIs: - distribution().- reg_plot(self, table=None, expression=None, **kwargs) (inherited)
 - Wrapper around seaborn.lmplot. V 0.39.10.19+ - Kwargs passed to seaborn.lmplot- xstr or None, optional
- Name of column in - datato plot on the x-axis.
- ystr or None, optional
- Name of column in - datato plot on the y-axis.
- huestr or None, optional
- Grouping variable that will produce elements with different colors. 
- colstr or None, optional
- Variable that defines columns of the facet grid. 
- rowstr or None, optional
- Variable that defines rows of the facet grid. 
- palettestr, list, dict, or None, optional
- Color palette for different - huelevels.
- col_wrapint or None, optional
- Wrap the column facets after this many columns. 
- heightfloat, default=5
- Height (in inches) of each facet. 
- aspectfloat, default=1
- Aspect ratio of each facet, so width = aspect * height. 
- markersstr or list, default=’o’
- Marker(s) used for the scatter plot points. 
- sharexbool or None, optional
- If True, share x-axis limits across facets. 
- shareybool or None, optional
- If True, share y-axis limits across facets. 
- hue_orderlist or None, optional
- Order to plot the levels of - hue.
- col_orderlist or None, optional
- Order to plot the levels of - col.
- row_orderlist or None, optional
- Order to plot the levels of - row.
- legendbool, default=True
- If True, add a legend for the - huevariable.
- legend_outbool or None, optional
- If True, place the legend outside the grid. 
- x_estimatorcallable or None, optional
- Function to compute a central tendency of - yfor each unique- x(e.g.- np.mean). Plot points at that value instead of raw data.
- x_binsint or None, optional
- Bin the - xvariable into discrete bins before plotting.
- x_ci‘ci’, ‘sd’, float, or None, default=’ci’
- Size/definition of the confidence band around the estimator in - x_estimator.
- scatterbool, default=True
- If True, draw the scatter points. 
- fit_regbool, default=True
- If True, fit and plot a regression line. 
- ciint or None, default=95
- Size of the bootstrap confidence interval for the regression estimate. 
- n_bootint, default=1000
- Number of bootstrap samples to compute - ci.
- unitsstr or None, optional
- Column in - dataidentifying sampling units. Used for clustered bootstrap.
- seedint, RandomState, or None, optional
- Random seed for reproducible bootstrapping. 
- orderint, default=1
- Polynomial order of the regression (1 = linear). 
- logisticbool, default=False
- If True, fit a logistic regression. 
- lowessbool, default=False
- If True, fit a locally weighted regression (LOWESS). 
- robustbool, default=False
- If True, use a robust regression estimator. 
- logxbool, default=False
- If True, estimate the model in log10(x) space. 
- x_partialstr, list of str, or None, optional
- Columns in - datato regress out of- xbefore plotting.
- y_partialstr, list of str, or None, optional
- Columns in - datato regress out of- ybefore plotting.
- truncatebool, default=True
- If True, limit the regression line to the data range. 
- x_jitterfloat or None, optional
- Amount of horizontal jitter to add to scatter points. 
- y_jitterfloat or None, optional
- Amount of vertical jitter to add to scatter points. 
- scatter_kwsdict or None, optional
- Additional keyword args passed to the scatter plot (e.g. alpha, s). 
- line_kwsdict or None, optional
- Additional keyword args passed to the regression line plot. 
- facet_kwsdict or None, optional
- Additional keyword args passed to seaborn.FacetGrid. 
 - See Also- seaborn.lmplotHigh-level interface for plotting linear models with faceting.
 - Tutorial: https://seaborn.pydata.org/tutorial/regression.html#regression-tutorial - relplot(self, table=None, **kwargs) (inherited)
 - Plots a relation plot 
apsimNGpy.core.mult_cores
Functions
- apsimNGpy.core.mult_cores.is_my_iterable(value)
- Check if a value is an iterable, but not a string. 
- apsimNGpy.core.mult_cores.simulation_exists(db_path: str, table_name: str, simulation_id: int) bool
- Check if a simulation_id exists in the specified table. - Args:
- db_path (str): Path to the SQLite database file. table_name (str): Name of the table to query. simulation_id (int): ID of the simulation to check. 
- Returns:
- bool: True if exists, False otherwise. 
 
Classes
- class apsimNGpy.core.mult_cores.MultiCoreManager
- MultiCoreManager(db_path: Union[str, pathlib.Path, NoneType] = (None,), agg_func: Optional[str] = None, ran_ok: bool = False, incomplete_jobs: list = <factory>) - List of Public Attributes:- List of Public Methods- __init__(self, db_path: Union[str, pathlib.Path, NoneType] = (None, ), agg_func: Optional[str] = None, ran_ok: bool = False, incomplete_jobs: list = <factory>) None
 - Initialize self. See help(type(self)) for accurate signature. - tag
 - Default: - 'multi-core'- default_db
 - Default: - 'manager_datastorage.db'- insert_data(self, results, table)
 - Insert results into the specified table results: (Pd.DataFrame, dict) The results that will be inserted into the table table: str (name of the table to insert) - See also - property tables
 - Summarizes all the tables that have been created from the simulations - run_parallel(self, model)
 - This is the worker for each simulation. - The function performs two things; runs the simulation and then inserts the simulated data into a specified database. - param model:
- str, dict, or Path object related .apsimx json file 
 - returns None - get_simulated_output(self, axis=0)
 - Get simulated output from the API - param axis:
- if axis =0, concatenation is along the - rowsand if it is 1 concatenation is along the- columns
 - property results
 - property methods for getting simulated output - clear_db(self)
 - Clears the database before any simulations. - First attempt a complete - deletionof the database if that fails, existing tables are all deleted- clear_scratch(self)
 - clears the scratch directory where apsim files are cloned before being loaded. should be called after all simulations are completed - clean_up_data(self)
 - Clears the data associated with each job. Please call this method after run_all_jobs is complete - save_tosql(self, db_name: str | pathlib.Path, *, table_name: str = 'aggregated_tables', if_exists: Literal['fail', 'replace', 'append'] = 'fail') None
 - Write simulation results to an SQLite database table. - This method writes - self.results(a pandas DataFrame) to the given SQLite database. It is designed to be robust in workflows where some simulations may fail: any successfully simulated rows present in- self.resultsare still saved. This is useful when an ephemeral/temporary database was used during simulation, and you need a durable copy.- Parameters- db_namestr | pathlib.Path
- Target database file. If a name without extension is provided, a - .dbsuffix is appended. If a relative path is given, it resolves against the current working directory.
- table_namestr, optional
- Name of the destination table. Defaults to - "Report".
- if_exists: {“fail”, “replace”, “append”}, optional.
- Write mode passed through to pandas: - - "fail": raise if the table already exists. -- "replace": drop the table, create a new one, then insert. -- "append": insert rows into existing table (default). (defaults to fail if table exists, more secure for the users to know- what they are doing) 
 - Raises- ValueError
- If - self.resultsis missing or empty.
- TypeError
- If - self.resultsis not a pandas DataFrame.
- RuntimeError
- If the underlying database writes fails. 
 - Notes- Ensure that - self.resultscontain only the rows you intend to persist with. If you maintain a separate collection of failed/incomplete jobs, they should not be included in- self.results.
- This method does not mutate - self.results.
 - Examples- >>> mgr.results.head() sim_id yield n2o 0 1 10.2 0.8 >>> mgr.save("outputs/simulations.db") - See also - save_tocsv(self, path_or_buf, **kwargs)
 - Persist simulation results to a SQLite database table. - This method writes - self.results(a pandas DataFrame) to the given csv file. It is designed to be robust in workflows where some simulations may fail: any successfully simulated rows present in- self.resultsare still saved. This is useful when an ephemeral/temporary database was used during simulation and you need a durable copy- . - Write object to a comma-separated values (csv) file. - Parameters- path_or_bufstr, path object, file-like object, or None, default None
- String, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string. If a non-binary file object is passed, it should be opened with - newline='', disabling universal newlines. If a binary file object is passed,- modemight need to contain a- 'b'.
- sepstr, default ‘,’
- String of length 1. Field delimiter for the output file. 
- na_repstr, default ‘’
- Missing data representation. 
- float_formatstr, Callable, default None
- Format string for floating point numbers. If a Callable is given, it takes precedence over other numeric formatting parameters, like decimal. 
- columnssequence, optional
- Columns to write. 
- headerbool or list of str, default True
- Write out the column names. If a list of strings is given it is assumed to be aliases for the column names. 
- indexbool, default True
- Write row names (index). 
- index_labelstr or sequence, or False, default None
- Column label for index column(s) if desired. If None is given, and - headerand- indexare True, then the index names are used. A sequence should be given if the object uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R.
- mode{‘w’, ‘x’, ‘a’}, default ‘w’
- Forwarded to either - open(mode=)or- fsspec.open(mode=)to control the file opening. Typical values include:- ‘w’, truncate the file first. 
- ‘x’, exclusive creation, failing if the file already exists. 
- ‘a’, append to the end of file if it exists. 
 
- encodingstr, optional
- A string representing the encoding to use in the output file, defaults to ‘utf-8’. - encodingis not supported if- path_or_bufis a non-binary file object.
- compressionstr or dict, default ‘infer’
- For on-the-fly compression of the output data. If ‘infer’ and ‘path_or_buf’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to - Nonefor no compression. Can also be a dict with key- 'method'set to one of {- 'zip',- 'gzip',- 'bz2',- 'zstd',- 'xz',- 'tar'} and other key-value pairs are forwarded to- zipfile.ZipFile,- gzip.GzipFile,- bz2.BZ2File,- zstandard.ZstdCompressor,- lzma.LZMAFileor- tarfile.TarFile, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive:- compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}.- Added in version 1.5.0: Added support for - .tarfiles.- May be a dict with key ‘method’ as compression mode and other entries as additional compression options if compression mode is ‘zip’. - Passing compression options as keys in dict is supported for compression modes ‘gzip’, ‘bz2’, ‘zstd’, and ‘zip’. 
- quotingoptional constant from csv module
- Defaults to csv.QUOTE_MINIMAL. If you have set a - float_formatthen floats are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric.
- quotecharstr, default ‘"’
- String of length 1. Character used to quote fields. 
- lineterminatorstr, optional
- The newline character or character sequence to use in the output file. Defaults to - os.linesep, which depends on the OS in which this method is called (’\n’ for linux, ‘\r\n’ for Windows, i.e.).- Changed in version 1.5.0: Previously was line_terminator, changed for consistency with read_csv and the standard library ‘csv’ module. 
- chunksizeint or None
- Rows to write at a time. 
- date_formatstr, default None
- Format string for datetime objects. 
- doublequotebool, default True
- Control quoting of - quotecharinside a field.
- escapecharstr, default None
- String of length 1. Character used to escape - sepand- quotecharwhen appropriate.
- decimalstr, default ‘.’
- Character recognized as decimal separator. E.g. use ‘,’ for European data. 
- errorsstr, default ‘strict’
- Specifies how encoding and decoding errors are to be handled. See the errors argument for - open()for a full list of options.
- storage_optionsdict, optional
- Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to - urllib.request.Requestas header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to- fsspec.open. Please see- fsspecand- urllibfor more details, and for more examples on storage options refer here.
 - Returns- None or str
- If path_or_buf is None, returns the resulting csv format as a string. Otherwise returns None. 
 - See Also- read_csv : Load a CSV file into a DataFrame. to_excel : Write DataFrame to an Excel file. - Examples- Create ‘out.csv’ containing ‘df’ without indices - >>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> df.to_csv('out.csv', index=False) - Create ‘out.zip’ containing ‘out.csv’ - >>> df.to_csv(index=False) 'name,mask,weapon\nRaphael,red,sai\nDonatello,purple,bo staff\n' >>> compression_opts = dict(method='zip', ... archive_name='out.csv') >>> df.to_csv('out.zip', index=False, ... compression=compression_opts) - To write a csv file to a new folder or nested folder you will first need to create it using either Pathlib or os: - >>> from pathlib import Path >>> filepath = Path('folder/subfolder/out.csv') >>> filepath.parent.mkdir(parents=True, exist_ok=True) >>> df.to_csv(filepath) - >>> import os >>> os.makedirs('folder/subfolder', exist_ok=True) >>> df.to_csv('folder/subfolder/out.csv') - run_all_jobs(self, jobs, *, n_cores=17, threads=False, clear_db=True, **kwargs)
 - runs all provided jobs using - processesor- threadsspecified- Parameters- threads: (bool) default is False
- Threads or processes, recommended is to use processes 
- jobs: (iterable[simulations paths]
- jobs to run 
- n_cores: (int)
- number of cores to use 
- clear_db: (bool)
- For clearing the database existing data if any. Defaults is True 
- kwargs:
- retry_rate: (int, optional)
- how many times to retry jobs before giving up 
 
 - returns:
- None 
- rtype:
- None 
 - agg_func
 - Default: - <member 'agg_func' of 'MultiCoreManager' objects>- db_path
 - Default: - <member 'db_path' of 'MultiCoreManager' objects>- incomplete_jobs
 - Default: - <member 'incomplete_jobs' of 'MultiCoreManager' objects>- ran_ok
 - Default: - <member 'ran_ok' of 'MultiCoreManager' objects>
apsimNGpy.core.pythonet_config
Module attributes
- apsimNGpy.core.pythonet_config.CI
- Default value: - ConfigRuntimeInfo(clr_loaded=True, bin_path=WindowsPath('D:/My_BOX/Box/PhD thes…
Functions
- apsimNGpy.core.pythonet_config.get_apsim_file_reader(method: str = 'string')
- Return an APSIM file reader callable based on the requested method. - This helper selects the appropriate APSIM NG - FileFormatimplementation, accounting for runtime changes in the file format (via- is_file_format_modified()) and whether the managed type is available under- Models.Core.ApsimFile.FileFormator- APSIM.Core.FileFormat. It then returns the corresponding static method to read an APSIM file either from a string or from a file path.- Parameters- method: {“string”, “file”}, optional
- Which reader to return: - “string” >>> returns - FileFormat.ReadFromString. - “file” >>> returns- FileFormat.ReadFromFile. Defaults to- "string".
 - Returns- Callable
- A .NET static method (callable from Python) that performs the read: either - ReadFromString(text: str)or- ReadFromFile(path: str).
 - Raises- NotImplementedError
- If - methodis not one of- stringor- file.
- AttributeError
- If the underlying APSIM - FileFormattype does not expose the expected reader method (environment/binaries misconfigured).
 - Notes- When : func: - is_file_format_modifiedreturns- bool.If False, then- Models.Core.ApsimFile.FileFormatis unavailable, the function falls back to- APSIM.Core.FileFormat.
- The returned callable is a .NET method; typical usage is - reader = get_apsim_file_reader("file"); model = reader(path).
 - Examples- Read from a file path: - >>> reader = get_apsim_file_reader("file") >>> sims = reader("/path/to/model.apsimx") - Read from a string (APSXML/JSON depending on APSIM NG): - >>> text = "...apsimx content..." >>> reader = get_apsim_file_reader("string") >>> sims = reader(text) 
- apsimNGpy.core.pythonet_config.get_apsim_version(bin_path: str | pathlib.Path = WindowsPath('D:/My_BOX/Box/PhD thesis/Objective two/morrow plots 20250821/APSIM2025.8.7844.0/bin'), release_number: bool = False) str | None
- Return the APSIM version string detected from the installed binaries. - The function initializes pythonnet for the given APSIM binaries path (via - load_pythonnet(bin_path)), then loads- Models.dlland reads its assembly version. By default, the returned string is prefixed with- "APSIM"; set- release_number=Trueto get the raw semantic version.- Parameters- bin_pathstr or pathlib.Path, optional
- Filesystem path to the APSIM binaries directory that contains - Models.dll. Defaults to- APSIM_BIN_PATH.
- release_numberbool, optional
- If - True, returns only the assembly version (e.g.,- "2024.6.123"). If- False(default), prefix with- "APSIM"(e.g.,- "APSIM 2024.6.123").
 - Returns- str or None
- The version string if detected successfully; otherwise - Nonewhen required system modules are unavailable (e.g., if the binaries path is not correctly configured).
 - Raises- ApsimBinPathConfigError
- If pythonnet/CLR is not initialized for the provided - bin_path(i.e., APSIM binaries path has not been set up).
 - Notes- This call requires a valid APSIM NG binaries folder and a loadable - Models.dllat- bin_path/Models.dll.
- load_pythonnetmust succeed so that the CLR is available; otherwise the version cannot be queried.
 - Examples- >>> get_apsim_version("/opt/apsim/bin") 'APSIM2024.6.123' >>> get_apsim_version("/opt/apsim/bin", True) '2024.6.123' - See Also- load_pythonnet : Initialize pythonnet/CLR for APSIM binaries. 
- apsimNGpy.core.pythonet_config.is_file_format_modified(bin_path: str | pathlib.Path | NoneType = None) bool
- Checks if the APSIM.CORE.dll is present in the bin path. Normally, the new APSIM version has this dll file. - Parameters- bin_path: Union[str, Path, None].
- Default is the current bin_path for apsimNGpy, used only when bin_path is None. 
 - returns:
- bool 
 
- apsimNGpy.core.pythonet_config.load_pythonnet(bin_path: str | pathlib.Path = None)
- A method for loading Python for .NET (pythonnet) and APSIM models from the binary path. It is also cached to avoid rerunning many times. - It initializes the Python for .NET (pythonnet) runtime and load APSIM models. - Loads the ‘coreclr’ runtime, and if not found, falls back to an alternate runtime. It also sets the APSIM binary path, adds the necessary references, and returns a reference to the loaded APSIM models. - Returns:- ConfigRuntimeInfo:
- an instance of ConfigRuntimeInfo with reference to the loaded APSIM models 
 - Raises:- KeyError: If APSIM path is not found in the system environmental variable. ValueError: If the provided APSIM path is invalid. - Important - This function is called internally by apsimNGpy modules, but it is dependent on correct configuration of the bin path. Please edit the system environmental variable on your computer or set it using: - set_apsim_bin_path()
Classes
- class apsimNGpy.core.pythonet_config.ConfigRuntimeInfo
- ConfigRuntimeInfo(clr_loaded: bool, bin_path: Union[pathlib.Path, str], file_format_modified: bool = True) - __init__(self, clr_loaded: bool, bin_path: pathlib.Path | str, file_format_modified: bool = True) None
 - Initialize self. See help(type(self)) for accurate signature. - file_format_modified
 - Default: - True
apsimNGpy.core.runner
Functions
- apsimNGpy.core.runner.collect_csv_by_model_path(model_path) 'dict[Any, Any]'
- Collects the data from the simulated model after run 
- apsimNGpy.core.runner.collect_csv_from_dir(dir_path, pattern, recursive=False) 'pd.DataFrame'
- Collects the csf=v files in a directory using a pattern, usually the pattern resembling the one of the simulations used to generate those csv files - dir_path: (str) path where to look for csv files- recursive: (bool) whether to recursively search through the directory defaults to false:- pattern:(str) pattern of the apsim files that produced the csv files through simulations- returns
- a generator object with pandas data frames 
 - Example: - mock_data = Path.home() / 'mock_data' # this a mock directory substitute accordingly df1= list(collect_csv_from_dir(mock_data, '*.apsimx', recursive=True)) # collects all csf file produced by apsimx recursively df2= list(collect_csv_from_dir(mock_data, '*.apsimx', recursive=False)) # collects all csf file produced by apsimx only in the specified directory directory 
- apsimNGpy.core.runner.collect_db_from_dir(dir_path, pattern, recursive=False) 'pd.DataFrame'
- Collects the data in a directory using a pattern, usually the pattern resembling the one of the simulations
- used to generate those csv files 
 - Parameters- dir_path(str)
- path where to look for csv files 
- recursive(bool)
- whether to recursively search through the directory defaults to false: 
- pattern :(str)
- pattern of the apsim files that produced the csv files through simulations 
- returns
- a generator object with pandas data frames 
 - Example: - mock_data = Path.home() / 'mock_data' # this a mock directory substitute accordingly df1= list(collect_csv_from_dir(mock_data, '*.apsimx', recursive=True)) # collects all csf file produced by apsimx recursively df2= list(collect_csv_from_dir(mock_data, '*.apsimx', recursive=False)) # collects all csf file produced by apsimx only in the specified directory directory 
- apsimNGpy.core.runner.get_apsim_version(verbose: 'bool' = False)
- Display version information of the apsim model currently in the apsimNGpy config environment. - verbose: (bool) Prints the version information- instantly- Example: - apsim_version = get_apsim_version() 
- apsimNGpy.core.runner.get_matching_files(dir_path: 'Union[str, Path]', pattern: 'str', recursive: 'bool' = False) 'List[Path]'
- Search for files matching a given pattern in the specified directory. - Args:
- dir_path(Union[str, Path]): The directory path to search in.- pattern(str): The filename pattern to match (e.g., “*.apsimx”).- recursive(bool): If True, search recursively; otherwise, search only in the top-level directory.
- Returns:
- List[Path]: A - listof matching Path objects.
- Raises:
- ``ValueError: `` If no matching files are found. 
 
- apsimNGpy.core.runner.run_from_dir(dir_path, pattern, verbose=False, recursive=False, write_tocsv=True, run_only=False) '[pd.DataFrame]'
- This function acts as a wrapper around the - APSIMcommand line recursive tool, automating the execution of APSIM simulations on all files matching a given pattern in a specified directory. It facilitates running simulations recursively across directories and outputs the results for each file are stored to a csv file in the same directory as the file’.- What this function does is that it makes it easy to retrieve the simulated files, returning a generator that yields data frames - Parameters- dir_path: (str or Path, required).
- The path to the directory where the simulation files are located. 
- pattern: (str, required)
- The file pattern to match for simulation files (e.g., “*.apsimx”). 
- recursive: (bool, optional)
- Recursively search through subdirectories for files matching the file specification. 
- write_tocsv: (bool, optional)
- specify whether to write the simulation results to a csv. if true, the exported csv files bear the same name as the input apsimx file name
- with suffix reportname.csv. if it is - False. If- verbose, the progress is printed as the elapsed time and the successfully saved csv
 
- run_only: (bool, optional)
- If True no results are loaded in memory. 
 - returns:
- generator that yields data frames knitted by pandas if ran_only is False else None 
 - Example: - mock_data = Path.home() / 'mock_data' # As an example, let's mock some data; move the APSIM files to this directory before running mock_data.mkdir(parents=True, exist_ok=True) from apsimNGpy.core.base_data import load_default_simulations path_to_model = load_default_simulations(crop='maize', simulations_object=False) # Get base model ap = path_to_model.replicate_file(k=10, path=mock_data) if not list(mock_data.rglob("*.apsimx")) else None df = run_from_dir(str(mock_data), pattern="*.apsimx", verbose=True, recursive=True) # All files that match the pattern - See also - Related API: - run_model_externally()
- apsimNGpy.core.runner.run_model_externally(model: 'Union[Path, str]', *, apsim_exec: 'Optional[Union[Path, str]]' = WindowsPath('D:/My_BOX/Box/PhD thesis/Objective two/morrow plots 20250821/APSIM2025.8.7844.0/bin/Models.exe'), verbose: 'bool' = False, to_csv: 'bool' = False, timeout: 'int' = 600, cwd: 'Optional[Union[Path, str]]' = None, env: 'Optional[Mapping[str, str]]' = None) 'subprocess.CompletedProcess[str]'
- Run APSIM externally (cross-platform) with safe defaults. - Validates an executable and model path. 
- Captures stderr always; stdout only if verbose. 
- Uses UTF-8 decoding with error replacement. 
- Enforces a timeout and returns a CompletedProcess-like object. 
- Does NOT use shell, eliminating injection risk. 
 - See also - Related API: - run_from_dir()
- apsimNGpy.core.runner.upgrade_apsim_file(file: 'str', verbose: 'bool' = True)
- Upgrade a file to the latest version of the .apsimx file format without running the file. - Parameters- file: file to be upgraded to the newest version- verbose: Write detailed messages to stdout when a conversion starts/finishes.- return
- The latest version of the .apsimx file with the same name as the input file 
 - Example: - from apsimNGpy.core.base_data import load_default_simulations filep =load_default_simulations(simulations_object= False)# this is just an example perhaps you need to pass a lower verion file because this one is extracted from thecurrent model as the excutor upgrade_file =upgrade_apsim_file(filep, verbose=False) 
Classes
- class apsimNGpy.core.runner.RunError
- Raised when the APSIM external run fails. - with_traceback() (inherited)
 - Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. - add_note() (inherited)
 - Exception.add_note(note) – add a note to the exception - args(inherited)
 - Default: - <attribute 'args' of 'BaseException' objects>
apsimNGpy.core_utils.database_utils
Interface to APSIM simulation models using Python.NET
Module attributes
- apsimNGpy.core_utils.database_utils.T
- Default value: - ~T
Functions
- apsimNGpy.core_utils.database_utils.chunker(data: 'Iterable[T]', *, chunk_size: 'Optional[int]' = None, n_chunks: 'Optional[int]' = None, pad: 'bool' = False, fillvalue: 'Optional[T]' = None) 'Iterator[List[T]]'
- Yield chunks from - data.- Choose exactly one of:
- chunk_size: yield consecutive chunks of length- chunk_size(last chunk may be shorter unless- pad=True)
- n_chunks: split data into- n_chunksnearly equal parts (sizes differ by at most 1)
 
 - Args- dataIterable[T]
- The input data (list, generator, etc.) 
- chunk_sizeint, optional
- Fixed size for each chunk (>=1). 
- n_chunksint, optional
- Number of chunks to create (>=1). Uses nearly equal sizes. 
- padbool, default False
- If True and using - chunk_size, pad the last chunk to length- chunk_size.
- fill valueT, optional
- Value to use when padding. 
 - Yields- List[T]
- Chunks of the input data. 
 - Raises- ValueError
- If neither or both of - chunk_sizeand- n_chunksare provided, or if provided values are invalid.
 
- apsimNGpy.core_utils.database_utils.clear_all_tables(db)
- Deletes all rows from all user-defined tables in the given SQLite database. - Parameters- dbstr | Path
- Path to the SQLite database file. 
 - Returns- None
- This function does not return a value. 
 - See also - Related API: - clear_table()
- apsimNGpy.core_utils.database_utils.clear_table(db: 'Union[str, Path]', table_name: 'str')
- Deletes all rows from all user-defined tables in the given SQLite database. - Parameters- dbstr | Path
- Path to the SQLite database file. 
- table_namestr
- Name of the target table to delete from the database - db
 - Returns- None
- This function does not return a value. 
 - See also - Related API: - clear_all_tables()
- apsimNGpy.core_utils.database_utils.dataview_to_dataframe(_model, reports)
- Convert .NET System.Data.DataView to Pandas DataFrame. report (str, list, tuple) of the report to be displayed. these should be in the simulations :param apsimng model: CoreModel object or instance :return: Pandas DataFrame 
- apsimNGpy.core_utils.database_utils.delete_all_tables(db: 'str') 'None'
- Deletes all tables in the specified SQLite database. - ⚠️ Proceed with caution: this operation is irreversible. - Args:
- db (str): Path to the SQLite database file. 
 
- apsimNGpy.core_utils.database_utils.delete_table(db, table_name)
- deletes the table in a database. - ⚠️ Proceed with caution: this operation is irreversible. 
- apsimNGpy.core_utils.database_utils.get_db_table_names(db)
- Parameter- db : database name or path. - return: list of table names
- All names - SQLdatabase table- namesexisting within the database
 
- apsimNGpy.core_utils.database_utils.read_db_table(db: 'Union[str, Path]', report_name: 'str')
- Connects to a specified SQLite database, retrieves the entire contents of a specified table, and returns the results as a pandas DataFrame. - Parameters- dbstr | Path
- Path to the SQLite database file. 
- report_namestr
- Name of the table in the database from which to retrieve data. 
 - Returns- pandas.DataFrame
- A DataFrame containing all records from the specified table. 
 - Examples- >>> database_path = 'your_database.sqlite' >>> table_name = 'your_table' >>> ddf = read_db_table(database_path, table_name) >>> print(ddf) - Notes- Establishes a connection to the SQLite database, executes - SELECT *on the specified table, loads the result into a DataFrame, and then closes the connection.
- Ensure that the database path and table name are correct. 
- This function retrieves all records; use with caution for very large tables. 
 
- apsimNGpy.core_utils.database_utils.read_with_query(db, query)
- Executes an SQL query on a specified SQLite database and returns the result as a pandas DataFrame. - Parameters- dbstr
- Database file path or identifier to connect to. 
- querystr
- SQL query string to execute. Must be a valid - SELECTstatement.
 - Returns- pandas.DataFrame
- A DataFrame containing the results of the SQL query. 
 - Examples- Define the database and the query - database_path = 'your_database.sqlite' sql_query = 'SELECT * FROM your_table WHERE condition = values' # Get the query result as a DataFrame df = read_with_query(database_path, sql_query) - Notes- Opens a connection to the SQLite database, executes the given query, loads the results into a DataFrame, and then closes the connection. 
- Ensure that the database path and query are correct and that the query is a proper SQL - SELECTstatement.
- Uses - sqlite3for the connection; confirm it is appropriate for your database.
 - See also - Related API: - read_db_table()
- apsimNGpy.core_utils.database_utils.write_results_to_sql(db_path: 'Union[str, Path]', table: 'str' = 'Report', *, if_exists: "Literal['fail', 'replace', 'append']" = 'append', insert_fn: 'InsertFn | None' = None, ensure_parent: 'bool' = True) 'Callable'
- Decorator factory: collect the wrapped function’s returned data and insert it or saves it into SQLite database. - After the wrapped function executes, its return value is normalized to a list of - (table, DataFrame)pairs via- _normalize_resultand inserted into- db_pathusing either the provided- insert_fnor the default- _default_insert_fn(which relies on- pandas.DataFrame.to_sql+ SQLAlchemy). The original return value is passed through unchanged to the caller.- Accepted return shapes- pd.DataFrame-> appended to- table
- (table_name: str, df: pd.DataFrame)-> appended to- table_name
- list[pd.DataFrame]-> each appended to- table
- list[(table_name, df)]-> routed per pair
- {"data": <df|list[dict]|dict-of-cols>, "table": "MyTable"}-> to “MyTable”
- {"TblA": df_or_records, "TblB": df2}-> multiple tables
- list[dict]or- dict-of-columns-> coerced to DataFrame -> appended to- table
- None-> no-op
 - Parameters- db_pathstr | pathlib.Path
- Destination SQLite file. A - .dbsuffix is enforced if missing. If- ensure_parentis True, parent directories are created.
- tablestr, default “Report”
- Default table name when the return shape does not carry one. 
- if_exists: {“fail”, “replace”, “append”}, default “append”
- Passed to - to_sqlby the inserter. See panda docs for semantics.
- insert_fncallable, optional
- Custom inserter - (db_path, df, table, if_exists) -> None. Use this to: - reuse a single connection/transaction across multiple tables, - enable SQLite WAL mode and retry on lock, - control dtype mapping or target a different DBMS.
- ensure_parentbool, default True
- If True, create missing parent directories for - db_path.
 - Returns- Callable
- A decorator that, when applied to a function, performs the persistence step after the function returns and then yields the original result. 
 - Raises- TypeError
- If the wrapped function’s result cannot be normalized by - _normalize_result.
- RuntimeError
- If any insert operation fails (original exception is chained as - __cause__).
- OSError
- On path or filesystem errors when creating the database directory/file. 
 - Side Effects- Creates parent directories for - db_path(when- ensure_parent=True).
- Creates/opens the SQLite database and writes one or more tables. 
- Skips empty frames: pairs where - dfis- Noneor- df.emptyare ignored.
- May DROP + CREATE the table when - if_exists="replace".
 - Cautions- **SQLite concurrency: ** Concurrent writers can trigger “database is locked”. Consider a custom - insert_fnenabling WAL mode, retries, and transactional batching for robustness.
- **Table name safety: ** Avoid propagating untrusted table names; identifier quoting is driver-dependent. 
- Schema drift: - to_sqlinfers SQL schema from the DataFrame’s dtypes each call. Ensure stable dtypes or manage schema explicitly in your- insert_fn.
- **Timezones: ** Pandas may localize/naivify datetime on writing; verify round-trips if timezone fidelity matters. 
- **Performance: ** Creating a new engine/connection per insert is simple but not optimal. For high-volume pipelines, supply an - insert_fnthat reuses a connection and commits once per batch.
 - Design rationale- Separates computation from persistence. The decorator is explicit about where data goes (db path, table names) and flexible about what callers return, reducing boilerplate in the business logic while still allowing power users to override insertion strategy. - Examples- Basic usage, single table with default appends: - @collect_returned_results("outputs/results.db", table="Report") def run_analysis(...): return df # a DataFrame - Multiple tables using a mapping shape: - @collect_returned_results("outputs/results.db") def summarize(...): return {"Summary": df1, "Metrics": df2} - Custom inserter enabling WAL mode and a single transaction: - def wal_insert(db, df, table, if_exists): import sqlite3 con = sqlite3.connect(db, isolation_level="DEFERRED") try: con.execute("PRAGMA journal_mode=WAL;") df.to_sql(table, con, if_exists=if_exists, index=False) con.commit() finally: con.close() - Examples: - >>> from pandas import DataFrame >>> from apsimNGpy.core_utils.database_utils import write_results_to_sql, read_db_table >>> @write_results_to_sql(db_path="db.db", table="Report", if_exists="replace") ... def get_report(): ... # Return a DataFrame to be written to SQLite ... return DataFrame({"x": [2], "y": [4]}) - >>> _ = get_report() # executes and writes to db.db::Report >>> db = read_db_table("db.db", report_name="Report") >>> print(db.to_string(index=False)) x y 2 4 - See also - Related API: - save_tosql(),- insert_data()
apsimNGpy.exceptions
Classes
- class apsimNGpy.exceptions.ApsimBinPathConfigError
- Raised when the APSIM bin path is misconfigured or incomplete. - with_traceback() (inherited)
 - Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. - add_note() (inherited)
 - Exception.add_note(note) – add a note to the exception - args(inherited)
 - Default: - <attribute 'args' of 'BaseException' objects>
- class apsimNGpy.exceptions.ApsimNGpyError
- Base class for all apsimNGpy-related exceptions. These errors are more descriptive than just rising a value error - with_traceback() (inherited)
 - Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. - add_note() (inherited)
 - Exception.add_note(note) – add a note to the exception - args(inherited)
 - Default: - <attribute 'args' of 'BaseException' objects>
- class apsimNGpy.exceptions.ApsimNotFoundError
- Raised when the APSIM executable or directory is not found. - with_traceback() (inherited)
 - Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. - add_note() (inherited)
 - Exception.add_note(note) – add a note to the exception - args(inherited)
 - Default: - <attribute 'args' of 'BaseException' objects>
- class apsimNGpy.exceptions.ApsimRuntimeError
- occurs when an error occurs during running APSIM models with Models.exe or Models on Mac and linnux - with_traceback() (inherited)
 - Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. - add_note() (inherited)
 - Exception.add_note(note) – add a note to the exception - args(inherited)
 - Default: - <attribute 'args' of 'BaseException' objects>
- class apsimNGpy.exceptions.CastCompilationError
- Raised when the C# cast helper DLL fails to compile. - with_traceback() (inherited)
 - Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. - add_note() (inherited)
 - Exception.add_note(note) – add a note to the exception - args(inherited)
 - Default: - <attribute 'args' of 'BaseException' objects>
- class apsimNGpy.exceptions.EmptyDateFrameError
- Raised when a DataFrame is unexpectedly empty. - with_traceback() (inherited)
 - Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. - add_note() (inherited)
 - Exception.add_note(note) – add a note to the exception - args(inherited)
 - Default: - <attribute 'args' of 'BaseException' objects>
- class apsimNGpy.exceptions.ForgotToRunError
- Raised when a required APSIM model run was skipped or forgotten. - with_traceback() (inherited)
 - Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. - add_note() (inherited)
 - Exception.add_note(note) – add a note to the exception - args(inherited)
 - Default: - <attribute 'args' of 'BaseException' objects>
- class apsimNGpy.exceptions.InvalidInputErrors
- Raised when the input provided is invalid or improperly formatted. - with_traceback() (inherited)
 - Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. - add_note() (inherited)
 - Exception.add_note(note) – add a note to the exception - args(inherited)
 - Default: - <attribute 'args' of 'BaseException' objects>
- class apsimNGpy.exceptions.ModelNotFoundError
- Raised when a specified model cannot be found. - with_traceback() (inherited)
 - Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. - add_note() (inherited)
 - Exception.add_note(note) – add a note to the exception - args(inherited)
 - Default: - <attribute 'args' of 'BaseException' objects>
- class apsimNGpy.exceptions.NodeNotFoundError
- Raised when a specified model node cannot be found. - with_traceback() (inherited)
 - Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. - add_note() (inherited)
 - Exception.add_note(note) – add a note to the exception - args(inherited)
 - Default: - <attribute 'args' of 'BaseException' objects>
- class apsimNGpy.exceptions.TableNotFoundError
- the table was not found error. - with_traceback() (inherited)
 - Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. - add_note() (inherited)
 - Exception.add_note(note) – add a note to the exception - args(inherited)
 - Default: - <attribute 'args' of 'BaseException' objects>
apsimNGpy.optimizer.moo
Classes
- class apsimNGpy.optimizer.moo.MultiObjectiveProblem
- List of Public Attributes:- indicators
- labels
- outcomes
 - List of Public Methods- Parameters- apsim_runnerapsimNGpy.core.cal.OptimizationBase
- Instance to run APSIM simulations. 
- objectiveslist of callable.
- List of functions that take simulation output (DataFrame) and return scalar objective values. 
- decision_varslist of dict, optional
- Each dict must have: ‘path’, ‘bounds’, ‘v_type’, ‘kwargs’. 
 - optimization_type(self)
 - Must be implemented as a property in subclass - is_mixed_type_vars(self)
 - Detect if decision vars contain types other than float or int. - minimize(self, **kwargs)
 - Minimization of function of one or more variables, objectives and constraints. wraps around Pymoo - Parameters- kwargsdict
- problem: instance of pymoo.core.problem.Problem
- A problem object which is defined using pymoo. 
 
- problem: instance of 
- algorithm: instance of pymoo.core.algorithm.Algorithm
- The algorithm object that should be used for the optimization. 
 
- algorithm: instance of 
- termination: pymoo.core.termination.Terminationor tuple default is None
- Usually the termination criterion that is used to stop the algorithm. 
 
- termination: 
- seedinteger
- The random seed to be used. 
 
- verbosebool
- Whether output should be printed or not. 
 
- displayDisplay
- Each algorithm has a default display object for printouts. However, it can be overwritten if desired. 
 
- display
- callbackpymoo.core.callback.Callback
- A callback object which is called each iteration of the algorithm. 
 
- callback
- save_historybool
- Whether the history should be stored or not. 
 
 
 - copy_algorithmbool
- Whether the algorithm object should be copied before optimization. 
 
 - add_control(self, path: str, *, bounds, v_type, q=None, start_value=None, categories=None, **kwargs) (inherited)
 - Adds a single APSIM parameter to be optimized. - Parameters- pathstr
- APSIM component path. - v_typetype
- The Python type of the variable. Should be either - intor- floatfor continous variable problem or ‘uniform’, ‘choice’, ‘grid’, ‘categorical’, ‘qrandint’, ‘quniform’ for mixed variable problem
 
- start_valueany (type determined by the variable type.
- The initial value to use for the parameter in optimization routines. Only required for single objective optimizations 
- boundstuple of (float, float), optional
- Lower and upper bounds for the parameter (used in bounded optimization). Must be a tuple like (min, max). If None, the variable is considered unbounded or categorical or the algorithm to be used do not support bounds 
- kwargs: dict
- One of the key-value pairs must contain a value of ‘?’, indicating the parameter to be filled during optimization. Keyword arguments are used because most APSIM models have unique parameter structures, and this approach allows flexible specification of model-specific parameters. It is also possible to pass other parameters associated with the model in question to be changed on the fly. 
 - Returns- selfobject
- Returns self to support method chaining. 
 - Warning - Raises a ValueError
- If the provided arguments do not pass validation via - _evaluate_args.
 - Note - This method is typically used before running optimization to define which parameters should be tuned. 
 - Example: - from apsimNGpy.core.apsim import ApsimModel from apsimNGpy.core.optimizer import MultiObjectiveProblem runner = ApsimModel("Maize") _vars = [ {'path': '.Simulations.Simulation.Field.Fertilise at sowing', 'Amount': "?", "bounds": [50, 300], "v_type": "float"}, {'path': '.Simulations.Simulation.Field.Sow using a variable rule', 'Population': "?", 'v_type': 'float', 'bounds': [4, 14]} ] problem = MultiObjectiveProblem(runner, objectives=objectives, decision_vars=_vars) # or problem = MultiObjectiveProblem(runner, objectives=objectives, None) problem.add_control( **{'path': '.Simulations.Simulation.Field.Fertilise at sowing', 'Amount': "?", "bounds": [50, 300], "v_type": "float"}) problem.add_control( **{'path': '.Simulations.Simulation.Field.Sow using a variable rule', 'Population': "?", 'v_type': 'float', 'bounds': [4, 14]}) 
apsimNGpy.optimizer.single
Classes
- class apsimNGpy.optimizer.single.ContinuousVariable
- Defines an optimization problem for continuous variables in APSIM simulations. - This class enables the user to configure and solve optimization problems involving continuous control variables in APSIM models. It provides methods for setting up control variables, applying bounds and starting values, inserting variable values into APSIM model configurations, and running optimization routines using local solvers or differential evolution. - Inherits from:
- AbstractProblem: A base class providing caching and model-editing functionality. 
- Parameters:
- model (str):The name or path of the APSIM template file. .- simulation (str or list, optional): The name(s) of the APSIM simulation(s) to target.- Defaults to all simulations. - decision_vars(list, optional): A list of VarDesc instances defining variable metadata.- labels (list, optional): Variable labels for display and results tracking.- cache_size (int):Maximum number of results to store in the evaluation cache.
- Attributes:
- model (str):The APSIM model template file name.- simulation (str):Target simulation(s).- decision_vars (list):Defined control variables.- decission_vars (list):List of VarDesc instances for optimization.- labels (list): Labelsfor variables.- pbar (tqdm):Progress bar instance.- `cache (bool):Whether to cache evaluation results.- `cache_size (int):Size of the local cache.
- Methods:
- add_control(...):Add a new control variable to the optimization problem.- bounds:Return the bounds for all control variables as a tuple.- starting_values():Return the initial values for all control variables.- minimize_with_local_solver(...):Optimize using- scipy.optimize.minimize.- optimize_with_differential_evolution(...):Optimize using- scipy.optimize.differential_evolution.
- Example:
- >>> class Problem(ContVarProblem): ... def evaluate(self, x): ... return -self.run(verbose=False).results.Yield.mean() - >>> problem = Problem(model="Maize", simulation="Sim") >>> problem.add_control("Manager", "Sow using a rule", "Population", int, 5, bounds=[2, 15]) >>> result = problem.minimize_with_local_solver(method='Powell') >>> print(result.x_vars) 
 - __init__(self, apsim_model: 'apsimNGpy.core.apsim.ApsimModel', max_cache_size: int = 400, objectives: list = None, decision_vars: list = None)
 - Initialize self. See help(type(self)) for accurate signature. - minimize_with_a_local_solver(self, **kwargs)
 - Run a local optimization solver using - scipy.optimize.minimize.- This method wraps - scipy.optimize.minimizeto solve APSIM optimization problems defined using APSIM control variables and variable encodings. It tracks optimization progress via a progress bar, and decodes results into user-friendly labeled dictionaries.- Optimization methods avail able in - scipy.optimize.minimizeinclude:- Method - Type - Gradient Required - Handles Bounds - Handles Constraints - Notes - Nelder-Mead - Local (Derivative-free) - No - No - No - Simplex algorithm - Powell - Local (Derivative-free) - No - Yes - No - Direction set method - CG - Local (Gradient-based) - Yes - No - No - Conjugate Gradient - BFGS - Local (Gradient-based) - Yes - No - No - Quasi-Newton - Newton-CG - Local (Gradient-based) - Yes - No - No - Newton’s method - L-BFGS-B - Local (Gradient-based) - Yes - Yes - No - Limited memory BFGS - TNC - Local (Gradient-based) - Yes - Yes - No - Truncated Newton - COBYLA - Local (Derivative-free) - No - No - Yes - Constrained optimization by linear approx. - SLSQP - Local (Gradient-based) - Yes - Yes - Yes - Sequential Least Squares Programming - trust-constr - Local (Gradient-based) - Yes - Yes - Yes - Trust-region constrained - dogleg - Local (Gradient-based) - Yes - No - No - Requires Hessian - trust-ncg - Local (Gradient-based) - Yes - No - No - Newton-CG trust region - trust-exact - Local (Gradient-based) - Yes - No - No - Trust-region, exact Hessian - trust-krylov - Local (Gradient-based) - Yes - No - No - Trust-region, Hessian-free - Reference: - Parameters: - **kwargs: - Arbitrary keyword arguments passed to - scipy.optimize.minimize, such as:- method (str): The optimization method to use.
- options (dict): Solver-specific options like- disp,- maxiter,- gtol, etc.
- bounds (list of tuple): Variable bounds; defaults to self.bounds if not provided.
- x0 (list):Optional starting guess (will override default provided values with- add_control_varstarting values).
 - Returns:
- result (OptimizeResult):
- The optimization result object with the following additional field: - result.x_vars (dict): A dictionary of variable labels and optimized values. 
 
 - Example: - from apsimNGpy.optimizer.single import ContinuousVariable class Problem(ContVarProblem): def __init__(self, model=None, simulation='Simulation'): super().__init__(model, simulation) self.simulation = simulation def evaluate(self, x, **kwargs): return -self.run(verbose=False).results.Yield.mean() problem = Problem(model="Maize", simulation="Sim") problem.add_control("Manager", "Sow using a rule", "Population", v_type="grid", start_value=5, values=[5, 9, 11]) problem.add_control("Manager", "Sow using a rule", "RowSpacing", v_type="grid", start_value=400, values=[400, 800, 1200]) result = problem.minimize_with_local_solver(method='Powell', options={"maxiter": 300}) print(result.x_vars) {'Population': 9, 'RowSpacing': 800} - optimization_type(self)
 - Must be implemented as a property in subclass - minimize_with_de(self, args=(), strategy='best1bin', maxiter=1000, popsize=15, tol=0.01, mutation=(0.5, 1), recombination=0.7, rng=None, callback=None, disp=True, polish=True, init='latinhypercube', atol=0, updating='immediate', workers=1, constraints=(), x0=None, *, integrality=None, vectorized=False)
 - reference; https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html - update_pbar(self, labels, extend_by=None) (inherited)
 - Extends the tqdm progress bar by - extend_bysteps if current progress exceeds the known max.- Parameters:
- labels (list): List of variable labels used for tqdm description. extend_by (int): Number of additional steps to extend the progress bar. 
 - add_control(self, path: str, *, bounds, v_type, q=None, start_value=None, categories=None, **kwargs) (inherited)
 - Adds a single APSIM parameter to be optimized. - Parameters- pathstr
- APSIM component path. - v_typetype
- The Python type of the variable. Should be either - intor- floatfor continous variable problem or ‘uniform’, ‘choice’, ‘grid’, ‘categorical’, ‘qrandint’, ‘quniform’ for mixed variable problem
 
- start_valueany (type determined by the variable type.
- The initial value to use for the parameter in optimization routines. Only required for single objective optimizations 
- boundstuple of (float, float), optional
- Lower and upper bounds for the parameter (used in bounded optimization). Must be a tuple like (min, max). If None, the variable is considered unbounded or categorical or the algorithm to be used do not support bounds 
- kwargs: dict
- One of the key-value pairs must contain a value of ‘?’, indicating the parameter to be filled during optimization. Keyword arguments are used because most APSIM models have unique parameter structures, and this approach allows flexible specification of model-specific parameters. It is also possible to pass other parameters associated with the model in question to be changed on the fly. 
 - Returns- selfobject
- Returns self to support method chaining. 
 - Warning - Raises a ValueError
- If the provided arguments do not pass validation via - _evaluate_args.
 - Note - This method is typically used before running optimization to define which parameters should be tuned. 
 - Example: - from apsimNGpy.core.apsim import ApsimModel from apsimNGpy.core.optimizer import MultiObjectiveProblem runner = ApsimModel("Maize") _vars = [ {'path': '.Simulations.Simulation.Field.Fertilise at sowing', 'Amount': "?", "bounds": [50, 300], "v_type": "float"}, {'path': '.Simulations.Simulation.Field.Sow using a variable rule', 'Population': "?", 'v_type': 'float', 'bounds': [4, 14]} ] problem = MultiObjectiveProblem(runner, objectives=objectives, decision_vars=_vars) # or problem = MultiObjectiveProblem(runner, objectives=objectives, None) problem.add_control( **{'path': '.Simulations.Simulation.Field.Fertilise at sowing', 'Amount': "?", "bounds": [50, 300], "v_type": "float"}) problem.add_control( **{'path': '.Simulations.Simulation.Field.Sow using a variable rule', 'Population': "?", 'v_type': 'float', 'bounds': [4, 14]}) 
- class apsimNGpy.optimizer.single.MixedVariable
- List of Public Attributes:- bounds
- indicators
- labels
- outcomes
 - List of Public Methods- add_control()
- minimize_with_a_local_solver()
- minimize_with_alocal_solver()
- minimize_with_de()
- update_pbar()
 - __init__(self, apsim_model: 'ApsimNGpy.Core.Model', max_cache_size=400, objectives=None, decision_vars=None)
 - Initialize self. See help(type(self)) for accurate signature. - minimize_with_alocal_solver(self, **kwargs)
- Run a local optimization solver (e.g., Powell, L-BFGS-B, etc.) on given defined problem. - This method wraps - scipy.optimize.minimizeand handles mixed-variable encoding internally using the- Objectivewrapper from- wrapdisc. It supports any method supported by SciPy’s- minimizefunction and uses the encoded starting values and variable bounds. This decoding implies that you can optimize categorical variable such as start dates or cultivar paramter with xy numerical values.- Progress is tracked using a progress bar, and results are automatically decoded and stored in - self.outcomes.- Parameters:
- **kwargs: Keyword arguments passed directly to scipy.optimize.minimize.
- Important keys include:
- method (str): Optimization algorithm (e.g., ‘Powell’, ‘L-BFGS-B’).
- options (dict): Dictionary of solver options like maxiter, disp, etc.
 
 
 
- **kwargs: Keyword arguments passed directly to 
 
 - scipy.optimize.minimize provide a number of optimization algorithms see table below or for details check their website: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize - Method - Type - Gradient Required - Handles Bounds - Handles Constraints - Notes - Nelder-Mead - Local (Derivative-free) - No - No - No - Simplex algorithm - Powell - Local (Derivative-free) - No - Yes - No - Direction set method - CG - Local (Gradient-based) - Yes - No - No - Conjugate Gradient - BFGS - Local (Gradient-based) - Yes - No - No - Quasi-Newton - Newton-CG - Local (Gradient-based) - Yes - No - No - Newton’s method - L-BFGS-B - Local (Gradient-based) - Yes - Yes - No - Limited memory BFGS - TNC - Local (Gradient-based) - Yes - Yes - No - Truncated Newton - COBYLA - Local (Derivative-free) - No - No - Yes - Constrained optimization by linear approx. - SLSQP - Local (Gradient-based) - Yes - Yes - Yes - Sequential Least Squares Programming - trust-constr - Local (Gradient-based) - Yes - Yes - Yes - Trust-region constrained - dogleg - Local (Gradient-based) - Yes - No - No - Requires Hessian - trust-ncg - Local (Gradient-based) - Yes - No - No - Newton-CG trust region - trust-exact - Local (Gradient-based) - Yes - No - No - Trust-region, exact Hessian - trust-krylov - Local (Gradient-based) - Yes - No - No - Trust-region, Hessian-free - Returns:
- result (OptimizeResult): The result of the optimization, with an additional
- x_varsattribute that provides a labeled dict of optimized control variable values.
 
- Raises:
- Any exceptions raised by - scipy.optimize.minimize.
 - The following example shows how to use this method, the evaluation is very basic, but you can add a more advanced evaluation by adding a loss function e.g RMSE os NSE by comparing with the observed and predicted, and changing the control variables: - class Problem(MixedVarProblem):
- def __init__(self, model=None, simulation=’Simulation’):
- super().__init__(model, simulation) self.simulation = simulation 
- def evaluate(self, x, **kwargs):
- # All evlauations can be defined inside here, by taking into accound the fact that the results object returns a data frame # Also, you can specify the database table or report name holding the - resultsreturn -self.run(verbose=False).results.Yield.mean() # A return is based on your objective definition, but as I said this could a- RRMSEerror or any other loss function
 
 - # Ready to initialise the problem - problem.add_control( path='.Simulations.Simulation.Field.Fertilise at sowing', Amount="?", bounds=[50, 300], v_type="float", start_value =50 ) problem.add_control( path='.Simulations.Simulation.Field.Sow using a variable rule', Population="?", bounds=[4, 14], v_type="float", start_value=5 ) - minimize_with_de(self, args=(), strategy='best1bin', maxiter=1000, popsize=15, tol=0.01, mutation=(0.5, 1), recombination=0.7, rng=None, callback=None, disp=True, polish=True, init='latinhypercube', atol=0, updating='immediate', workers=1, constraints=(), x0=None, seed=1, *, integrality=None, vectorized=False)
 - Runs differential evolution on the wrapped objective function. Reference: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html - optimization_type(self)
 - Must be implemented as a property in subclass - update_pbar(self, labels, extend_by=None) (inherited)
 - Extends the tqdm progress bar by - extend_bysteps if current progress exceeds the known max.- Parameters:
- labels (list): List of variable labels used for tqdm description. extend_by (int): Number of additional steps to extend the progress bar. 
 - minimize_with_a_local_solver(self, **kwargs) (inherited)
 - To be implimneted in sub class - add_control(self, path: str, *, bounds, v_type, q=None, start_value=None, categories=None, **kwargs) (inherited)
 - Adds a single APSIM parameter to be optimized. - Parameters- pathstr
- APSIM component path. - v_typetype
- The Python type of the variable. Should be either - intor- floatfor continous variable problem or ‘uniform’, ‘choice’, ‘grid’, ‘categorical’, ‘qrandint’, ‘quniform’ for mixed variable problem
 
- start_valueany (type determined by the variable type.
- The initial value to use for the parameter in optimization routines. Only required for single objective optimizations 
- boundstuple of (float, float), optional
- Lower and upper bounds for the parameter (used in bounded optimization). Must be a tuple like (min, max). If None, the variable is considered unbounded or categorical or the algorithm to be used do not support bounds 
- kwargs: dict
- One of the key-value pairs must contain a value of ‘?’, indicating the parameter to be filled during optimization. Keyword arguments are used because most APSIM models have unique parameter structures, and this approach allows flexible specification of model-specific parameters. It is also possible to pass other parameters associated with the model in question to be changed on the fly. 
 - Returns- selfobject
- Returns self to support method chaining. 
 - Warning - Raises a ValueError
- If the provided arguments do not pass validation via - _evaluate_args.
 - Note - This method is typically used before running optimization to define which parameters should be tuned. 
 - Example: - from apsimNGpy.core.apsim import ApsimModel from apsimNGpy.core.optimizer import MultiObjectiveProblem runner = ApsimModel("Maize") _vars = [ {'path': '.Simulations.Simulation.Field.Fertilise at sowing', 'Amount': "?", "bounds": [50, 300], "v_type": "float"}, {'path': '.Simulations.Simulation.Field.Sow using a variable rule', 'Population': "?", 'v_type': 'float', 'bounds': [4, 14]} ] problem = MultiObjectiveProblem(runner, objectives=objectives, decision_vars=_vars) # or problem = MultiObjectiveProblem(runner, objectives=objectives, None) problem.add_control( **{'path': '.Simulations.Simulation.Field.Fertilise at sowing', 'Amount': "?", "bounds": [50, 300], "v_type": "float"}) problem.add_control( **{'path': '.Simulations.Simulation.Field.Sow using a variable rule', 'Population': "?", 'v_type': 'float', 'bounds': [4, 14]}) 
apsimNGpy.parallel.process
Functions
- apsimNGpy.parallel.process.custom_parallel(func, iterable: 'Iterable', *args, **kwargs)
- Run a function in parallel using threads or processes. - funccallable
- The function to run in parallel. 
- iterableiterable
- An iterable of items to be processed by - func.
- *args
- Additional positional arguments to pass to - func.
 - Any
- The result of - funcfor each item in- iterable.
 - kwargs
- use_threadbool, optional, default=False
- If - True, use threads; if- False, use processes (recommended for CPU-bound work).
- ncoresint, optional
- Number of worker threads/processes. Defaults to ~50% of available CPU cores. 
- verbosebool, optional, default=True
- Whether to display a progress indicator. 
- progress_messagestr, optional
- Message shown alongside the progress indicator. Defaults to - f"Processing multiple jobs via {func.__name__}, please wait!".
- voidbool, optional, default=False
- If - True, consume results internally (do not yield). Useful for side-effect–only functions.
- unitstr, optional, default=”iteration”
- Label for the progress indicator (cosmetic only). 
 - Run with processes (CPU-bound): - >>> list(run_parallel(work, range(5), use_thread=False, ncores=4)) - Run with threads (I/O-bound): - >>> for _ in run_parallel(download, urls, use_thread=True, verbose=True): ... pass - See also 
 
- apsimNGpy.parallel.process.custom_parallel_chunks(func: 'Callable[..., Any]', jobs: 'Iterable[Iterable[Any]]', *args, **kwargs)
- Run a function in parallel using threads or processes. The iterable is automatically divided into chunks, and each chunk is submitted to worker processes or threads. - Parameters- funccallable
- The function to run in parallel. 
- iterableiterable
- An iterable of items that will be processed by - func.
- *args
- Additional positional arguments to pass to - func.
 - Yields- Any
- The results of - funcfor each item in the iterable. If- funcreturns- None, the results will be a sequence of- None. Note: The function returns a generator, which must be consumed to retrieve results.
 - Other Parameters- use_threadbool, optional, default=False
- If - True, use threads for parallel execution; if- False, use processes (recommended for CPU-bound tasks).
- ncoresint, optional
- Number of worker processes or threads to use. Defaults to 50% of available CPU cores. 
- verbosebool, optional, default=True
- Whether to display a progress bar. 
- progress_messagestr, optional
- Message to display alongside the progress bar. Defaults to - f"Processing multiple jobs via {func.__name__}, please wait!".
- voidbool, optional, default=False
- If - True, results are consumed internally (not yielded). Useful for functions that operate with side effects and do not return results.
- unitstr, optional, default=”iteration”
- Label for the progress bar unit (cosmetic only). 
- n_chunksint, optional
- Number of chunks to divide the iterable into. For example, if the iterable length is 100 and - n_chunks=10, each chunk will have 10 items.
- chunk_sizeint, optional
- Size of each chunk. If specified, - n_chunksis determined automatically. For example, if the iterable length is 100 and- chunk_size=10, then- n_chunks=10.
 - Examples- Run with processes (CPU-bound): >>> def worker(): … pass - >>> list(run_parallel(work, range(5), use_thread=False, ncores=4)) - Run with threads (I/O-bound): - >>> for _ in run_parallel(download, urls, use_thread=True, verbose=True): ... pass - See also 
apsimNGpy.validation.evaluator
Evaluate predicted vs. observed data using statistical and mathematical metrics. For detailed metric definitions, see Archontoulis et al. (2015).
Classes
- class apsimNGpy.validation.evaluator.Validate
- Compares predicted and observed values using various statistical metrics. - __init__(self, actual: numpy.ndarray | List[float] | pandas.core.series.Series, predicted: numpy.ndarray | List[float] | pandas.core.series.Series) None
 - Method generated by attrs for class Validate. - METRICS
 - Default: - ['RMSE', 'MAE', 'MSE', 'RRMSE', 'bias', 'ME', 'WIA', 'R2', 'CCC', 'slope']